• 제목/요약/키워드: Multibody System

검색결과 239건 처리시간 0.019초

고속전철 집전시스템의 동역학 해석에 관한 연구(I. 가선계의 모델링 및 해석) (Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(I. Modeling and Analysis of a Catenary System))

  • 서종휘;정일호;박태원;목진용;김영국;김석원
    • 한국정밀공학회지
    • /
    • 제22권1호
    • /
    • pp.152-159
    • /
    • 2005
  • The dynamic properties between catenary and pantograph of high-speed train are very important factors to affect the stable electric power supply. So as to design the reliable current collection system, a multibody simulation model is needed. In this paper, the dynamic analysis method for a pantograph-catenary cable system of high-speed train is presented. The very deformable motion of a catenary cable is demonstrated using nonlinear continuous beam theory, which is based on an absolute nodal coordinate formulation, and the pantograph is modeled as a rigid multibody. The proposed method might be very efficient, because this method can present the nonlinear properties of a flexible catenary cable and set a various boundary conditions.

자동차 와이퍼 링키지의 진동해석을 위한 동역학 모델링 (Automotive Windshield Wiper Linkage Dynamic Modeling for Vibration Analysis)

  • 이병수
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.465-472
    • /
    • 2008
  • An automotive windshield wiper system is modeled mainly for vibration analysis purpose. The model is composed of solid links, ideal joints, imperfect joints to simulate unavoidable manufacturing defects and bushings having stiffness, contact between a wiper blade and a wind screen glass, friction, a spring and an actuator. Main stream of wiper dynamics analysis has been obtaining a closed form of system of equations using Newton's or Lagrange's formula and doing a numerical simulation study to understand and predict the behavior of it. However, the modeling process is complex since a wiper system is of multibody and a contact problem occurs. When imperfection, such as dead zone of a joint and stiffness of a rubber bushing, should be included, the added complexity makes the modeling difficult. Since the imperfection is understood as main cause of problematic vibration, the dynamics model of a wiper system aiming vibration analysis should include such unavoidable manufacturing defects in the model. An open form of dynamic model of a automotive windshield wiper system with imperfect joints using a commercial software is obtained and a simulation analyssis is conducted for vibration reduction study.

탄성 다물체계 동역학을 기반으로 한 부유식 해상 풍력 발전기 타워의 구조 해석 (Structural Analysis of Floating Offshore Wind Turbine Tower Based on Flexible Multibody Dynamics)

  • 박광필;차주환;구남국;조아라;이규열
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1489-1495
    • /
    • 2012
  • 본 논문에서는 부유식 플랫폼의 동적 거동을 고려하여 해상 풍력 발전기 타워의 구조 해석을 수행하였다. 풍력 발전기는 플랫폼, 타워, 낫셀, 허브 그리고 3 개의 블레이드로 구성된다. 타워는 3 차원 빔 요소를 사용하여 탄성체로 모델링하여 탄성 다물체계 동역학을 기반으로 한 운동 방정식을 구성하였다. 회전하는 블레이드에는 블레이드 요소 운동량 이론에 따라 계산된 공기역학적 힘이 적용되었고, 부유식 플랫폼에는 유체정역학적 힘, 유체동역학적 힘 그리고 계류력이 적용되었다. 타워의 구조 동역학적 거동을 수치적으로 시뮬레이션하였다. 시뮬레이션 결과를 이용하여 굽힘 모멘트와 응력을 산출하고 허용치와 비교하였다.

상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토 (Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System)

  • 구남국;하솔;노명일
    • 한국전산구조공학회논문집
    • /
    • 제26권4호
    • /
    • pp.247-254
    • /
    • 2013
  • 본 논문에서는 해상 시추작업을 위한 heave compensation system의 시뮬레이션 모델을 개발하였다. 우선 시뮬레이션을 위하여, 다물체계 동역학 커널을 개발하였다. 다물체계 동역학 커널은 입력 받은 heave compensation system 시뮬레이션 모델의 운동학적 정보를 이용하여 recursive Newton-Euler formulation 방법을 기반으로 운동방정식을 자동으로 구성하고, 수치적으로 해를 계산하는 기능을 한다. 그리고 해상 시추선에 작용하는 외력을 계산하기 위하여 유체 정역학적 힘과 유체 동역학적 힘을 계산하는 모듈을 개발하였다. 이와 같이 개발한 커널과 모듈들을 적용하여 해상 시추선의 hoisting system 동적거동 해석을 수행하고, 관절에서의 구속력을 계산하였다.

Dynamic Analysis of a Moving Vehicle on Flexible beam Structure (II) : Application

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.64-71
    • /
    • 2002
  • Recently, mechanical systems such as a high-speed vehicles and railway trains moving on flexible beam structures have become a very important issue to consider. Using the general approach proposed in the first part of this paper, it is possible to predict motion of the constrained mechanical system and the elastic structure, with various kinds of foundation supporting conditions. Combined differential-algebraic equation of motion derived from both multibody dynamics theory and finite element method can be analyzed numerically using a generalized coordinate partitioning algorithm. To verify the validity of this approach, results from the simply supported elastic beam subjected to a moving load are compared with the exact solution from a reference. Finally, parametric study is conducted for a moving vehicle model on a simply supported 3-span bridge.

자기부상열차/가이드웨이 연성 모델링 연구 (Coupling Model of the Maglev Vehicle/Guideway)

  • 한형석;성호경;김영중;김병현
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.243-250
    • /
    • 2007
  • In general the Maglev vehicle is run over the elevated track called guideway. Since the guideway is elevated, the flexibility of the guideway has an effect on the dynamic responses of a vehicle such as its stability and ride quality. To improve the running performance of the Maglev vehicle and design a cost effective guideway using the dynamic analysis, the dynamic analysis of the system requires the coupling model of the Maglev vehicle and guideway. A coupling model based on multibody dynamics is proposed and programmed. With the program, the UTM01, a low speed Maglev vehicle, is analyzed and discussed.

전개가능 구조물의 시공 과정 해석 (An Analysis of the Construction Process for Deployable Structures)

  • 한상을;이지연
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.176-183
    • /
    • 2004
  • Deployable structures are space frames consisting of straight bars that are linked together into bundle and can be deployed large, load bearing structures. Deployable structures are easy to set up, to assemble, to disassemble, to transport and to keep for the use. Also, reusability and flexibility are another important advantages for environmental matter. Since deployable structures have various advantages, they offer viable alternatives for a wide range of potential applications in the temporary construction industry as well as in the aerospace industry. The purpose of this thesis is to decide on geometrical parameters of the design through the numerical analysis and create a final configuration of deployable structures using the geometrical parameters. The Multibody Dynamic Analysis that is dealt with mechanics and aeronautics is used for the method of analysis.

  • PDF

이족로봇의 동적 보행계획과 역동역학 해석 (Dynamic Walking Planning and Inverse Dynamic Analysis of Biped Robot)

  • 박인규;김진걸
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.133-144
    • /
    • 2000
  • The dynamic walking planning and the inverse dynamics of the biped robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian corrdinates then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot the holonomic constraints are added or deleted on the equations of motion. the number of these constraints can be changed by types of walking patterns with three modes. In order for the dynamic walking to be stabilizable optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

이족보행로봇의 동적보행과 역동역학 해석 (Dynamic Walking and Inverse Dynamic Analysis of Biped Walking Robot)

  • 박인규;김진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.548-555
    • /
    • 2000
  • The dynamic walking and the inverse dynamics of the biped walking robot is investigated in this paper. The biped robot is modeled with 14 degrees of freedom rigid bodies considering the walking pattern and kinematic construction of humanoid. The method of the computer aided multibody dynamics is applied to the dynamic analysis. The equations of motion of biped are initially represented as terms of the Cartesian coordinates, then they are converted to the minimum number of equations of motion in terms of the joint coordinates using the velocity transformation matrix. For the consideration of the relationships between the ground and foot, the holonomic constraints are added or deleted on the equations of motion. The number of these constraints can be changed by types of walking pattern with three modes. In order for the dynamic walking to be stabilizable, optimized trunk positions are iteratively determined by satisfying the system ZMP(Zero Moment Point) and ground conditions.

  • PDF

다물체로 구성된 궤도차량에 대한 동적 해석(II) : 비선형 접촉력 모듈 개발 (Dynamic Analysis of Multibody Tracked Vehicles(II) : Development of the Nonlinear Contact Force Module)

  • 신장호;최진환;이승종
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.24-31
    • /
    • 1998
  • In this study, a procedure is presented for the dynamic analysis of a multibody tracked vehicle system. The planar vehicle model used in this investigation is assumed to consist of two kinematically decoupled subsystems. i.e., the chassis subsystem and track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. The nonlinear contact force modules describing the interaction between track links, and sprocket, idler, rollers and ground will be developed.

  • PDF