• Title/Summary/Keyword: Multibody Dynamic Model

Search Result 154, Processing Time 0.021 seconds

Development of Multibody Dynamic Model of Cervical Spine for Virtual In Vitro Cadaveric Experiment (가상 생체외 사체 실험용 경추 다물체 동역학 모델 개발)

  • Lim, Dae Seop;Lee, Ki Seok;Kim, Yoon Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.953-959
    • /
    • 2013
  • In this study, a multibody dynamic model of the cervical spine was developed for a virtual in-vitro cadaveric experiment. The dynamic cervical spine model was reconstructed based on Korean CT images and the material properties of joints and soft tissue obtained from in-vitro experimental literature. The model was validated by comparing the inter-segmental rotation, multi-segmental rotations, load-displacement behavior, ligament force, and facet contact force with the published in-vitro experimental data. The results from the model were similar to published experimental data. The developed dynamic model of the cervical spine can be useful for injury analysis to predict the loads and deformations of the individual soft-tissue elements as well as for virtual in-vitro cadaveric experiments.

Estimation on Heavy Handling Robot using Flexible-Rigid Multibody Analysis (변형체-강체 다물체 해석을 이용한 초중량물 핸들링로봇의 평가)

  • Kim, Jin-Kwang;Ko, Hae-Ju;Park, Ki-Beom;Kim, Tae-Gyu;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.46-52
    • /
    • 2010
  • A flexible-rigid multibody analysis was pen armed to examine the dynamic response of a heavy handling robot system under a worst motion scenario. A rigid body dynamics analysis was solved and compared with flexible-rigid multibody analysis. The modal analysis and test were also carried out to establish the accuracy and the validation of the finite element model used in this paper. For the flexible-rigid multibody simulation, stresses in several major bodies were interested, so that those parts are flexible and other parts are modeled as rigid body in order to reduce computer resources.

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

A recursive multibody model of a tracked vehicle and its interaction with flexible ground

  • Han, Ray P.S.;Sander, Brian S.;Mao, S.G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.133-149
    • /
    • 2001
  • A high-fidelity model of a tracked vehicle traversing a flexible ground terrain with a varying profile is presented here. In this work, we employed a recursive formulation to model the track subsystem. This method yields a minimal set of coordinates and hence, computationally more efficient than conventional approaches. Also, in the vehicle subsystem, the undercarriage frame is assumed to be connected to the chassis by a revolute joint and a spring-damper unit. This increase in system mobility makes the model more realistic. To capture the vehicle-ground interaction, a Winkler-type foundation with springs-dampers is used. Simulation runs of the integrated tracked vehicle system for vibrations for four varying ground profiles are provided.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.

Optimization of a composite beam for high-speed railroads

  • Poliakov, Vladimir Y.;Saurin, Vasyli V.
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.493-501
    • /
    • 2020
  • The paper describes an optimization method based on the mathematical model of interaction within multibody 'bridge-track-cars" dynamic system. The interaction is connected with considerable dynamic phenomena influenced by high traffic speed (up to 400 km/h) on high-speed railroads. The trend analysis of a structure is necessary to determine the direction and resource of optimizing the system. Thus, scientific methods of decision-making process are necessary. The process requires a great amount of information analysis dealing with behavior and changes of the "bridge-track-cars system" that consists of mechanisms and structures, including transitions. The paper shows the algorithm of multi-criteria optimization that can essentially reduce weight of a bridge superstructure using big data analysis. This reduction is carried out in accordance with the constraints that have to be satisfied in any case. Optimization of real steel-concrete beam is exemplified. It demonstrates possibility of measures that are offered by the algorithm.

Dynamic Analysis of Multibody Tracked Vehicles(II) : Development of the Nonlinear Contact Force Module (다물체로 구성된 궤도차량에 대한 동적 해석(II) : 비선형 접촉력 모듈 개발)

  • 신장호;최진환;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.24-31
    • /
    • 1998
  • In this study, a procedure is presented for the dynamic analysis of a multibody tracked vehicle system. The planar vehicle model used in this investigation is assumed to consist of two kinematically decoupled subsystems. i.e., the chassis subsystem and track subsystem. The chassis subsystem includes the chassis frame, sprocket, idler and rollers, while the track subsystem is represented as a closed kinematic chain consisting of rigid links interconnected by revolute joints. The nonlinear contact force modules describing the interaction between track links, and sprocket, idler, rollers and ground will be developed.

  • PDF

DYNAMIC ANALYSIS OF A MECHANICAL SYSTEM WITH FLEXIBLE BODIES (유연성을 가진 기계 시스템의 동역학 해석)

  • Park, T.W.;Seo, J.H.;Chung, W.S.;Chae, J.S.;Seo, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.422-427
    • /
    • 2001
  • The component mode synthesis method allows the elastic deformation of each component in the flexible multibody system by a sum of modes and modal coordinates. This paper focuses on the selection of boundary conditions and deformation modes for redundantly constrained flexible components in mechanical system dynamics. The result of a flexible body dynamic analysis with only normal modes is used to identify proper boundary conditions of a static modes and a desired set of static modes which will be used in the final model. A simple four bar mechanism is used to explain the procedure and a space satellite with solar panels is analyzed using the proposed method.

  • PDF

CAE Procedure of Engine Balance Shaft Housing for Prediction of Durability (엔진 밸런스 샤프트 하우징의 내구성 평가를 위한 CAE 절차 개발)

  • Choi, Hang-Jip
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.133-138
    • /
    • 2007
  • The balance shaft housing in the recent engines tends to have the high cycle fatigue crack caused by increased engine power. In this paper, a CAE procedure is introduced to predict the durability of the balance shaft housing. The procedure is performed through two analysis steps. In the first step, the multibody dynamic simulation is used to obtain more accurate loading boundary conditions applied to the finite element model for the following step. Next, the finite element analysis is performed to predict the durability of the balance shaft housing through the calculation of the safety factor. Through this CAE procedure, the revised balance shaft housing was developed to improve the durability. And the durability of the housing was confirmed experimentally.

Study on Dynamic Analysis of Magnetic Levitation Vehicles (자기부상열차의 동적 해석 연구)

  • 한형석;조흥제;김대진
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.218-225
    • /
    • 1999
  • Dynamic analysis of the magnetic levitation vehicle UTM01 is studied using the multibody dynamic analysis program DADS. The magnetic levitation force is defined and incorporated into DADS through the user-defined subroutines of DADS. The vehicle with bogies is modeled in 3 dimension. The developed vehicle model with magnetic nodules is analyzed for two rail profiles. The results show that the presented method is applicable to magnetic levitation vehicles.

  • PDF