• 제목/요약/키워드: Multibody Dynamic

검색결과 293건 처리시간 0.034초

Modal Analysis of Constrained Multibody Systems Undergoing Constant Accelerated Motions

  • Park, Dong-Hwan;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1086-1093
    • /
    • 2004
  • The modal characteristics of constrained multibody systems undergoing constant accelerated motions are investigated in this paper. Relative coordinates are employed to derive the equations of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium position of a constrained multibody system needs to be obtained from the nonlinear equations of motion, which are then linearized at the dynamic equilibrium position. The mass and the stiffness matrices for the modal analysis can be obtained from the linearized equations of motion. To verify the effectiveness and the accuracy of the proposed method, two numerical examples are solved and the results obtained by using the proposed method are compared with those obtained by analytical and other numerical methods. The proposed method is found to be accurate as well as effective in predicting the modal characteristics of constrained multibody systems undergoing constant accelerated motions.

다물체계내 유연체의 구조기인 소음해석 (Structure Borne Noise Analysis of a Flexible Body in Multibody System)

  • 김효식;김창부
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

인터넷 기반 범용 다물체 동역학 시뮬레이션 시스템 개발 (Development of a Internet-based Dynamic Simulation System for Multibody Systems)

  • 이재경;한형석;서종휘;박태원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.699-704
    • /
    • 2003
  • A Internet-based dynamic simulation system, called P-DYN, for multibody dynamic systems is developed. All the interfaces of the system are accessible via Web browsers, such as Netscape or Explorer. The system uses a template type P-DYN/Modeler as a preprocessor. The P-DYN postprocessor composed of P-DYN/Plotter and P-DYN/Animator is developed in JAVA. The P-DYN/Solver for predicting the dynamic behavior is run on the server. Anyone who wants to simulate the dynamics of multibody systems or share results data can access the analysis system over the Internet regardless of their OS, platform, or location.

  • PDF

웹기반 범용 다물체 동역학 시뮬레이션 시스템 개발 (Development of a Web-based Dynamic Simulation System for Multibody Systems)

  • 한형석;이재경
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.194-204
    • /
    • 2003
  • A Web-based dynamic simulation system, called O-DYN, for multibody dynamic systems is developed. All the interfaces of the system are accessible via Web browsers, such as Netscape or Explorer. The system uses a block-diagram type O-DYN/Modeler developed in JAVA Applet as a preprocessor. The O-DYN postprocessor composed of O-DYN/Plotter and O-DYN/Animator is developed in JAVA Applet. The O-DYN/Solver for predicting the dynamic behavior is run on the server. Anyone who wants to simulate the dynamics of multibody systems or share results data can access the analysis system over the Internet regardless of their OS, platform, or location.

인터넷 기반 공학서비스를 위한 다물체 동역학 해석 시스템 개발 (Development of a Multibody Dynamic Analysis System for Internet-Based Engineering Service)

  • 한형석;신동우;이재경
    • 연구논문집
    • /
    • 통권32호
    • /
    • pp.95-102
    • /
    • 2002
  • An Internet-based dynamic analysis system, called P-DYN, for multibody dynamic systems is developed. All the interfaces of the system are accessible via Web browsers, such as Netscape or Explorer. The system uses a template type P-DYN/Modeler as a preprocessor. The P-DYN postprocessor composed of P-DYN/Plotter and P-DYN/Animator is developed in JAVA. The P-DYN/Solver for predicting the dynamic behavior is run on the server. Anyone who wants to analyze the dynamics of multibody systems or share results data can access the analysis system over the Internet regardless of their OS, platform, or location.

  • PDF

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Simulation Analysis on Flexible Multibody Dynamics of Drum Brake System of a Vehicle

  • Liu, Yi;Hu, Wen-Zhuan
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권2호
    • /
    • pp.125-130
    • /
    • 2015
  • Using flexible multibody system dynamic method, the rigid-flexible coupling multibody dynamic analysis model of the drum brake system was developed, and the kinematic and dynamic simulation of the system was processed as its object of study. Simulations show that the friction will increase with the dynamic friction coefficient, but high dynamic friction coefficient will cause the abnormal vibration and worsen the stability of the brake system, even the stability of the whole automobile. The modeling of flexible multi-body can effectively analyze and solve complex three-dimensional dynamic subjects of brake system and evaluate brake capability. Further research and study on this basis will result in a convenient and effective solution that can be much helpful to study, design and development of the brake system.

다물체 동역학 해석방법을 이용한 철도차량의 임계속도 계산 (Calculation of Critical Speed of Railway Vehicle by Multibody Dynamics Analysis)

  • 강주석
    • 대한기계학회논문집A
    • /
    • 제37권11호
    • /
    • pp.1371-1377
    • /
    • 2013
  • 본 연구에서는 다물체 동역학 모델을 이용한 철도차량의 임계속도 계산 방법을 제시하였다. 휠과 레일의 접촉 구속조건과 접촉력을 휠셋 단위에서 수식화하였다. 이를 대차모델에 합하여 구속조건을 가진 다물체 동역학 운동방정식으로 철도차량의 동적모델을 표현하였다. 철도차량의 다물체 동역학 모델에 대한 비선형 구속조건식과 운동방정식은 QR 분해법을 이용하여 독립좌표만으로 이루어진 선형방정식으로 유도하였다. 유도된 선형방정식으로부터 휠셋 및 이륜 대차에 대한 고유치 해석결과를 통해 임계속도를 구하였다. 임계속도에 영향을 미치는 차량 파라미터의 영향에 대한 결과를 제시하였다.

회전 외팔보에 대한 유연 다물체 동역학 시뮬레이션의 실험적 검증 (Experimental Verification of Flexible Multibody Dynamic Simulations for A Rotating Beam)

  • 김성수;강연준;이규일
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.267-274
    • /
    • 2002
  • Using a flexible rotating beam test bed, experimental verification of a flexible multibody dynamic simulations for a rotating beam model has been carried out. The test bed consists of a flexible arm, harmonic driver reducer, AC servo motor and DSP board with PC. The mechanical ports of the test bed has been designed using 3D CAD program. For the simulation model, mass and moment of inertia of each part of the flexible rotating beam test bed are also obtained from 3D CAD model. In the flexible multibody dynamic simulations, the substructuring model has been established to capture nonlinear effects of the flexible rotating beam. Through the experimental verification, substructuring model provides better results than those from the linear model in the high speed rotation.

다물체동력학을 이용한 기계 부품의 피로수명 예측 기술 (Technology for Fatigue Life Prediction of Mechanical Components using Multibody Dynamics)

  • 한형석
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.47-55
    • /
    • 1997
  • Fatigue life prediction of mechanical components is necessary to develop new products, which is very expensive and time-consuming. This paper reviews technologies proposed for computation of dynamic stress in mechanical components. The methods based on multibody dynamics are considering more real operational conditions than other methods. The technology for fatigue life prediction without the prototype for experiment results in cost and time saving. This technology can be applied to design of various mechanical components like carbody.

  • PDF