• Title/Summary/Keyword: Multi-wavelength laser

Search Result 66, Processing Time 0.027 seconds

Development of Multi-wavelength Laser Medical Therapy Apparatus (다파장 레이저치료기의 개발)

  • Cheon, Min-Woo;Kim, Seong-Hwan;Park, Yong-Pil;Lee, Ho-Sik;Kim, Tae-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.736-741
    • /
    • 2007
  • Low level laser therapy has various therapy effects, This paper performed the basic study for fabricating the low level laser therapy apparatus, and one of the goals of this paper was to make this apparatus used handily. The apparatus has been fabricated using the laser diode and microprocessor unit. The apparatus used a 660nm, 785nm and 850nm laser diode for laser medical therapy and was designed for a pulse width modulation type to increase stimulation effects. To raise the stimulus effect of the human body, the optical irradiation frequency could be set up. In result, the $1{\sim}10\;Hz$ irradiation frequency could be controlled stably.

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

Fine tuning of wavelength for the intenrnal wavelength locker module at 50 GHz composed of the photo-diode array black with the multi-channel tunable laser diodes in DWDM application (DWDM용 다채널 파장 가변 레이저 다이오드 모듈을 위한 다수개의 광 수신 소자를 갖는 50 GHz 내장형 파장 안정화 모듈의 파장 미세 조정)

  • 박흥우;윤호경;최병석;이종현;최광성;엄용성;문종태
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.384-389
    • /
    • 2002
  • A new idea of the wavelength locking module for DWDM application was investigated in the present research. Only one etalon photo-diode is generally used in the internal/external wavelength locking system. For the internal wavelength locking module with 50 GHz applications, an algle tuning method of the etalon commonly applied. However, the alignment process of the etalon with the angle tuning method is limited because the lock performance is extremely sensitive accoriding to the change of the tilting angle. In an optical viewpoint, the alignment tolerance of the locker module with the etalon PD array block was good, and the precise tuning of the wavelength was possible. The characteristics of free spectral range (FSR) and peak shift of wavelength according to the tilting angle with the locker module was investigated. For the present module, the optimized initial tilting angle was experimentally obtained.

Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

  • Park, Kyung Man;Ahn, Sung Hee;Bae, Yong Jin;Kim, Myung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.907-911
    • /
    • 2013
  • Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with ${\alpha}$-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of $10^{-5}-10^{-4}$ for peptides and $10^{-8}-10^{-7}$ for matrices are far smaller than $10^{-3}-10^{-1}$ for peptides and $10^{-5}-10^{-3}$ for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase.

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

Fabrication of tunable all-fiber feedback laser and its application (파장가변이 가능한 완전 광섬유형 궤환 레이저 구현 및 응용)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1220-1225
    • /
    • 2009
  • In this paper, a tunable fiber feedback laser based on the use of Sagnac loop filter and fiber Bragg grating (FBG) is proposed. The Sagnac loop filter using a high birefringence fiber provides precise 0.33-nm channel spacing as a multi-wavelength grid filter. Ni-Cr wire wound on the FBG is useful to induce the thermo-optic effect of the fiber. Two types of FBG structures, which have a different length of wire, are demonstrated to show the wavelength shift and separation. To tune FBG by resistant heat, some current is supplied into the wire. When the wavelength matched with one of the cavity modes of Sagnac loop filter, the mode-locked lasing is occurred. The electrical power sensitivity of the resonant wavelength is measured to 1.75pm/mW. This laser configuration can be applied the electrical power system for monitoring the power fluctuation.

Laser Induced Impedance Changes in Hollow Cathode Lamps

  • Byung Chul Cha;Jae Jung Lee;Ki Beom Lee;Hyo Jin Kim;Gae Ho Lee;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.610-614
    • /
    • 1993
  • Laser induced impedance changes in hollow cathode lamps containing sputtered metal atoms have been employed to measure the spectroscopic properties of metal. This technique, known as optogalvanic spectroscopy, has been shown to be a powerful and inexpensive technique for the investigation of atomic and molecular species. Characteristic optogalvanic signals from hollow cathode lamps (HCL) made of different metal species and induced with a pulsed dye laser were observed, and the dependence of the optogalvanic signal on the discharge current and wavelength of laser was measured. Based on the results obtained, the mechanisms involved in evoking the optogalvanic signals were consisted of single-photon absorption, multi-photon absorption, and photoionization. Moreover the current dependence of the optogalvanic signal indicates that the optogalvanic technique could be one of the most sensitive optical methods of detecting atomic species.

Widely Tunable Coupled-ring Reflector Laser Diode Consisting of Square Ring Resonators

  • Kim, Su-Hyun;Byun, Young-Tae;Kim, Doo-Gun;Dagli, Nadir;Chung, Young-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.38-41
    • /
    • 2010
  • We design and fabricate a widely tunable laser diode made of InGaAsP-InP. The diode is monolithically integrated with a wavelength-selective coupled-ring reflector and semiconductor amplifiers. For realization of a compact size device, deeply etched multi-mode interference couplers and square ring resonators composed of total-internal-reflection mirrors are adopted and fabricated using a self-aligned process. It is demonstrated that the laser diode exhibits single mode operation and 16 nm tuning range with side-mode-suppression-ratio exceeding 20 dB.

The Fabrication of (Ga, Al) As/GaAs Modified Multi-Quantum Well Laser Diode by MOCVD (MOCVD법에 의한 (Ga, Al) As/GaAs 변형된 영지우물 레이저 다이오드의 제작)

  • Kim, Chung-Jin;Kang, Myung-Ku;Kim, Yong;Eom, Kyung-Sook;Min, Suk-Ki;Oh, Hwan-Sool
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.9
    • /
    • pp.36-45
    • /
    • 1992
  • The Modified Multi-Quantum Well(MMQWAl) structures have been grown by Mental-Organic chemical Vapor Deposition(MOCVD) method and stripe type MMQW laser diodes have been investigated. In the case of GaAs/AlGaAs superlattice and quantum well growth by MOCVD, the periodicity, interface abruptess, Al compositional uniformity and layer thickness have been confirmed though the shallow angle lapping technique, double crystal x-ray diffractometry (DCXD) and photoluminescence (PL) measurement. stripe-type MMQW laser diodes have been fabricated using the process technology of photolithography, chemical etching, ohmic contact, back side removing and cleaving. As the result of the electrical and opticalmeasurement of these laser diodes, we have achieved the series resistance of $1[\Omega}~2{\Omega}$ by current-voltage measurements, the threshold current of 200-300mA by currnt-light measurements and the lasing wavelength of 8000-8400$\AA$ by lasing spectrum measurements.

  • PDF