• Title/Summary/Keyword: Multi-walled Carbon Nanotube

Search Result 280, Processing Time 0.039 seconds

Carbon nanotube as and electron transfer mediator in electrochemical biosensors (전기화학 바이오센서의 전자전달 매개체로써의 탄소 나노튜브에 관한 연구)

  • Park, Eun-Jin;Song, Min-Jung;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1436-1437
    • /
    • 2006
  • 탄소 나노튜브는 기계적인 강도가 크고, 표면적이 넘으며 전기전도도가 우수할 뿐만 아니라 화학적으로도 안정하기 때문에 최근 여러분야에 적용하려는 연구가 활발히 진행되고 있는 나노물질이다. 특히 바이오센서에서 탄소 나노튜브는 작업 전극의 활성을 증대시키는 물질로써, 안정적인 효소 고정화에 기여하는 reservior로써 그리고 반응에서 생성된 전자를 전극에 효과적으로 전달하는 매개체로써 이용되고 있다. 본 연구에서는 다중벽 탄소 나노튜브(multi-walled carbon nanotube ; MWNT)를 화학처리하여 작용기를 유도한 후 효소와 반응시킨 용액으로 스크린 프린팅 방법으로 제작된 탄소전극의 표면을 개질하는 방법으로 바이오센서를 제작하였다. 이렇게 제작된 바이오센서를 탄소 나노튜브를 이용하지 않은 바이오 센서와 전기화학적으로 분석한 결과 감도가 약 3배정도 증가하는 결과를 얻을 수 있었다. 이것은 효소반응 시 발생된 전자가 나노튜브를 통해서 전극에 효과적으로 전달됨을 의미한다.

  • PDF

Water - Assisted Efficient Growth of Multi-walled Carbon Nanotubes by Thermal Chemical Vapor Deposition

  • Choi, In-Sung;Jeon, Hong-Jun;Kim, Young-Rae;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.418-418
    • /
    • 2009
  • Vertically aligned arrays of multi-walled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by water-assisted thermal chemical vapor deposition (CVD). We studied changes in growth by parameters of growth temperature, growth time, rates of gas and annealing time of catalyst. Also, We grew CNTs by adding a little amount of water vapor to enhance the growth of CNTs. $H_2$, Ar, and $C_2H_2$ were used as carrier gas and feedstock, respectively. Before growth, Fe served as catalyst, underneath which AI were coated as an underlayer and a diffusion barrier, respectively, on the Si substrate. The water vapor had a greater effect on the growth of CNTs on a smaller thickness of catalyst. When the water vapor was introduced, the growth of CNTs was enhanced than without water. CNTs grew 1.29 mm for 10 min long by adding the water vapor, while CNTs were 0.73 mm long without water vapor for the same period of time. CNTs grew up to 1.97 mm for 30 min prior to growth termination under adding water vapor. As-grown CNTs were characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy.

  • PDF

Dispersibility of multi-walled carbon nanotubes functionalized with butyl and hexyl group (Butyl 및 Hexyl기가 도입된 다중벽 탄소나노튜브의 분산성)

  • Ryu, Jeong-Hyun;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2713-2718
    • /
    • 2010
  • To improve the CNT's dispersion, we tried to chemically modify the surface of MWNT with the butyllithium and the hexyllithium solution in sonicated reactor. The functionalized-MWNTs were characterized by Fourier transform infrared spectrometer(FT-IR) and Raman spectrophotometer. Also, we investigated the amount of alkyl moiety incorporated into MWNT's surface with Thermal gravimetric analyzer(TGA) and dispersibility in various organic solvents. Finally, we could find organic content was about 5% of the functionalized MWNT and dispersibility was enhanced in some solvents having intermediate solubility parameter.

NOx Gas Detection Characteristics of MWCNT Gas Sensor by Electrode Spacing Variation (MWCNT 가스센서의 전극 간극 변화에 따른 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.668-672
    • /
    • 2014
  • Carbon nanotubes(CNT) has chemical stability and great sensitivity characteristics. In particular, the gas sensor required characteristics such as rapid, selectivity and sensitivity sensor. Therefore, CNT are ideal materials to gas sensor. So, we fabricated the NOx gas sensors of MOS-FET type using the MWCNT (multi-walled carbon nanotube). The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$(gate-source voltage) and electrode changed electrode spacing=30, 60, 90[${\mu}m$]. The gas sensor absorbed with the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was increased by magnification of electrode spacing. Furthermore, when the voltage($V_{gs}$) was applied to the gas sensor, the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the electrode spacing $90[{\mu}m]$. We also obtained the adsorption energy($U_a$) using the Arrhenius plots by the reduction of resistance due to the voltage variations. As a result, we obtained that the adsorption energy was increased with the increment of the applied voltages.

Synthesis of Multi-Walled Carbon Nanotube/Polystyrene (MWCNT/PS) Composites by Solution Process and Their Thermal Behavior (용액공정을 이용한 다중벽 탄소 나노튜브/폴리스티렌(MWCNT/PS) 복합체 합성 및 열적 거동)

  • Teng, Dayong;Shin, Young Hwan;Kwon, Younghwan
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.421-426
    • /
    • 2008
  • Multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites with various MWCNT contents were prepared by using a solution process with an aid of surfactant. Particularly, PS's with 3 different molecular weights (${\bar{M}}_n$ = 101500 g/mole for PS-1, ${\bar{M}}_n$ = 89900 g/mole for PS-2, and ${\bar{M}}_n$ = 85000 g/mole for PS-3) were used in this study. Thermal behavior of these composites was examined by using an oscillator rheometer at $210^{\circ}C$ and $180^{\circ}C$, of above and below the critical flow temperature ($T_{cf}{\sim}195^{\circ}C$) of PS matrix, respectively. The storage and loss modulus, and the complex viscosity of these composites increased with increasing MWCNT content at both temperatures. Largest increases in the frequency-dependent moduli and complex viscosity were observed between 2 wt% and 5 wt% of MWCNTs at $210^{\circ}C$ and $180^{\circ}C$. Only the composite at $210^{\circ}C$ showed the rheological phase transition from a viscous-dominant to an elastic-dominant behavior of the composites at a certain MWCNT content. The MWCNT content at the rheological phase transition of MWCNT/PS composites generally increased with decreasing molecular weight of PS, and was measured to be 3.5 wt% for MWCNT/PS-1, 3.2 wt% for MWCNT/PS-2, and 3.0 wt% for MWCNT/PS-3 composites.

Carbon Nanotube/Nafion Composites for Biomimetic Artificial Muscle Actuators

  • Lee, Se-Jong;Yoon, Hyun-Woo;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.198-201
    • /
    • 2007
  • Multi-walled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by solution casting to elucidate the effect of M-CNT addition, from 0 to 7 wt%, on the viscoelastic behavior of the composites. The M-CNT bundles induced by the Nafion polymer were determined to be uniformly distributed for the 1 wt% M-CNT/Nafion nanocomposites. The 1 wt% M-CNT/Nafion composite exhibited the highest blocking stress of 2.3 kPa due to its high elastic modulus of 0.485 GPa. From a dynamic mechanical analysis, the 1 wt% M-CNT had the highest storage and loss moduli compared with the other samples in all frequency and temperature ranges. From the storage modulus data, the M-CNT loaded composites had similar $T_g$ values near $120^{\circ}C$. The glass transition temperatures of the M-CNT loaded composites were $120^{\circ}C$ (1 wt%), $117^{\circ}C$ (3 wt%), $117^{\circ}C$ (5 wt%), and $135^{\circ}C$ (7 wt%), suggesting that the effect of the M-CNTs on the Nafion film begins at 1 wt%. Thus, it has been concluded that the 1 wt% M-CNT disported composite is attractive for actuator applications.

Electrical Resistivity and Mechanical Properties of Polypropylene Composites Containing Carbon Nanotubes and Stainless Steel Short Fibers (탄소나노튜브와 스테인레스강 단섬유를 함유한 폴리프로필렌 복합체의 전기저항 및 기계적 특성)

  • Jung, Jong Ki;Park, Kihun;Bang, Daesuk;Oh, Myunghoon;Kim, Bongseok;Lee, Jong Keun
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.250-256
    • /
    • 2014
  • Polypropylene (PP) composites containing conductive multi-walled carbon nanotube (MWNT) and stainless steel short fiber (SSF) were manufactured using a twin screw extruder and characterized their surface resistivity and mechanical properties in this work. Surface resistivity measurements showed that the percolation threshold appeared at a lower MWNT loading when a small amount of SSF was added to PP/MWNT composites. Tensile modulus and strength of the composites increased but elongation-at-break decreased greatly compared to pure PP. Also, the effects of MWNT and SSF on storage modulus and tan ${\delta}$ from dynamic mechanical analysis for the composites were examined, and the morphologies of fractured surface and the fillers were observed using a scanning electron microscope.

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

The Electrical Properties of Cementitious Composites with Carbon Black and MWCNT for the Development of Cement-Based Battery (시멘트기반 배터리 개발을 위한 Carbon Black 및 MWCNT 혼입 시멘트 복합체의 전기적 특성 분석)

  • Lee, Joo-Ha
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.212-213
    • /
    • 2018
  • The cementitious composites have been developed to satisfy various demands of the construction market. The conductive concrete, which is a carbon-based cementitious composite, was used for the deicing or the detecting the internal crack. The cement-based battery is a technology that applies the basic concept of the alkaline battery to these conductive concretes. The cementitious composites could have a function as batteries, through a mixing of anode and cathode, which were consist of the zinc and manganese dioxide powder. The carbon-based materials, which have a significant effect on electrical properties, could be considered as the main variable in cement-based batteries. Therefore, in this study, the effects of carbon-based materials were investigated. Two types of materials, including the Carbon black and Multi-walled carbon nanotube(MWCNT), were considered as the main variables. From the experiment results, the electrical characteristics such as resistance, voltage, and current were compared according to the age.

  • PDF