Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.2.250

Electrical Resistivity and Mechanical Properties of Polypropylene Composites Containing Carbon Nanotubes and Stainless Steel Short Fibers  

Jung, Jong Ki (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Park, Kihun (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Bang, Daesuk (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Oh, Myunghoon (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology)
Kim, Bongseok (Thinker Route Co. LTD.)
Lee, Jong Keun (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.38, no.2, 2014 , pp. 250-256 More about this Journal
Abstract
Polypropylene (PP) composites containing conductive multi-walled carbon nanotube (MWNT) and stainless steel short fiber (SSF) were manufactured using a twin screw extruder and characterized their surface resistivity and mechanical properties in this work. Surface resistivity measurements showed that the percolation threshold appeared at a lower MWNT loading when a small amount of SSF was added to PP/MWNT composites. Tensile modulus and strength of the composites increased but elongation-at-break decreased greatly compared to pure PP. Also, the effects of MWNT and SSF on storage modulus and tan ${\delta}$ from dynamic mechanical analysis for the composites were examined, and the morphologies of fractured surface and the fillers were observed using a scanning electron microscope.
Keywords
polypropylene; multi-walled carbon nanotube; stainless steel short fiber; surface resistivity; tensile properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Arjmand, T. Apperley, M. Okoniewski, and U. T. Sundararaj, Carbon, 50, 5126 (2012).   DOI   ScienceOn
2 D. S. Jeong and B. U. Nam, Polymer(Korea), 35, 17 (2011).
3 M. H. Al-Saleh and U. T. Sundararaj, Carbon, 47, 2 (2009).   DOI   ScienceOn
4 Y. L. Yang, M. C. Gupta, K. L. Dudley, and R. W. Lawrence, Nano. Lett., 5, 2131 (2005).   DOI   ScienceOn
5 B. O. Lee, W. J. Woo, and M. S. Kim, Macromol. Mater. Eng., 286, 114 (2001).   DOI
6 N. C. Das and S. Maiti. J. Mater. Sci., 43, 1920 (2008).   DOI
7 V. S. Mironov, M. Park, C. Choe, J. Kim, S. Lim, and H. J. Ko, J. Appl. Polym. Sci., 84, 2040 (2002).   DOI
8 T. McNally, P. Boyd, C. McClory, D. Bien, I. Moore, B. Millar, J. Davidson, and T. Carroll, J. Appl. Polym. Sci., 107, 2015 (2008).   DOI
9 G. H. Motlagh, A. N. Hrymak, and M. R. Thompson, J. Polym. Sci., Part B: Polym. Phys., 45, 1808 (2007).   DOI
10 C. J. Kim, H. D. Choi, K. S. Suh, and H. G. Yoon, Polymer(Korea), 27, 201 (2003).
11 K. H. Wong, S. J. Pickering, and C. D. Rudd, Compos. Part A, 41, 693 (2010).   DOI
12 C. S. Chen, W. R. Chen, S. C. Chen, and R. D. Chien, Int. Commun. Heat Mass Transfer, 35, 744 (2008).   DOI   ScienceOn
13 H. Chang, M. J. Kao, K. D. Huang, C. G. Kuo, and S. Y. Huang, J. Nanosci. Nanotechnol., 11, 1754 (2011).   DOI   ScienceOn
14 H. Fu, B. Liao, F. J. Qi, B. C. Sun, A. P. Liu, and D. L. Ren, Compos. Part B, 39, 585 (2008).   DOI
15 J. Smuckler and P. Finnerty, Proceedings of the American Chemical Society Meeting, Chicago, 1983.
16 S. Ward, A. Bolvari, and B. Gorry, SAMPE J., 26, 9 (1990).
17 X. Sun, Y. Cheng, and H. Wu, Adv. Mater. Res., 472, 748 (2012).
18 H. M. Kim, K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, Appl. Phys. Lett., 84, 589 (2004).   DOI   ScienceOn
19 M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, and U. T. Sundararaj, Carbon, 49, 3430 (2011).   DOI