Browse > Article

Synthesis of Multi-Walled Carbon Nanotube/Polystyrene (MWCNT/PS) Composites by Solution Process and Their Thermal Behavior  

Teng, Dayong (Department of Chemical Engineering, Daegu University)
Shin, Young Hwan (Department of Chemical Engineering, Daegu University)
Kwon, Younghwan (Department of Chemical Engineering, Daegu University)
Publication Information
Applied Chemistry for Engineering / v.19, no.4, 2008 , pp. 421-426 More about this Journal
Abstract
Multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites with various MWCNT contents were prepared by using a solution process with an aid of surfactant. Particularly, PS's with 3 different molecular weights (${\bar{M}}_n$ = 101500 g/mole for PS-1, ${\bar{M}}_n$ = 89900 g/mole for PS-2, and ${\bar{M}}_n$ = 85000 g/mole for PS-3) were used in this study. Thermal behavior of these composites was examined by using an oscillator rheometer at $210^{\circ}C$ and $180^{\circ}C$, of above and below the critical flow temperature ($T_{cf}{\sim}195^{\circ}C$) of PS matrix, respectively. The storage and loss modulus, and the complex viscosity of these composites increased with increasing MWCNT content at both temperatures. Largest increases in the frequency-dependent moduli and complex viscosity were observed between 2 wt% and 5 wt% of MWCNTs at $210^{\circ}C$ and $180^{\circ}C$. Only the composite at $210^{\circ}C$ showed the rheological phase transition from a viscous-dominant to an elastic-dominant behavior of the composites at a certain MWCNT content. The MWCNT content at the rheological phase transition of MWCNT/PS composites generally increased with decreasing molecular weight of PS, and was measured to be 3.5 wt% for MWCNT/PS-1, 3.2 wt% for MWCNT/PS-2, and 3.0 wt% for MWCNT/PS-3 composites.
Keywords
multi-walled carbon nanotube; composite; critical flow temperature; thermal behavior;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 S.-D. Park, D.-H. Han, D. Teng, Y. Kwon, and G.-Y. Choi, J. Korean Phys. Soc., 48, 476 (2006)
2 T. Kitano, T. Kataoka, and Y. Nagatsuka, Rheol. Acta., 23, 20 (1984)   DOI
3 J. P. Salvetat, A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro, Phys. Rev. Lett., 82, 944 (1999)   DOI   ScienceOn
4 A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L. S. Schadler, Chem. Mater., 15, 3198 (2003)   DOI   ScienceOn
5 S. J. V. Frankland and V. M. Harik, Surf. Sci., 86, 2079 (2002)
6 P. Potschke, A. R. Bhattacharyya, and A. Janke, Eur. Polym. J., 40, 137 (2004)   DOI   ScienceOn
7 P. Potschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002)   DOI   ScienceOn
8 D. U. Ahn and S.-Y. Kwak, Macromol. Mater. Eng., 286, 17 (2001)   DOI   ScienceOn
9 S. Cui, R. Canet, A. Derre, M. Couzi, and P. Delhaes, Carbon, 41, 797 (2003)   DOI   ScienceOn
10 L. Jin, C. Bower, and O. Zhou, Appl. Phys. Lett., 73, 1197 (1998)   DOI   ScienceOn
11 G.-Y. Choi, H.-G. Kim, Y.-H. Kim, C.-W. Seo, J.-H. Choi, D.-H. Han, D.-H. Oh, and K.-E. Min, J. Appl. Polym. Sci., 86, 917 (2002)   DOI   ScienceOn
12 M. S. P. Shaffer, X. Fan, and A. H. Windle, Carbon, 36, 1603 (1998)   DOI   ScienceOn
13 J. L. Bahr and J. M. Tour, J. Mater. Chem., 12, 1952 (2002)   DOI   ScienceOn
14 C. D. Han and J. K. Kim, Macromolecules, 22, 383 (1989)   DOI   ScienceOn
15 S. J. Park, M. S. Cho, S. T. Lim, H. J. Choi, and M. S. Jhon, Macromol. Rapid Commun., 24, 1070 (2003)   DOI   ScienceOn
16 N. Nakayama and E. R. Harrell, in Current Topics in Polymer Science, vol. II: Rheology and Polymer Processing/Multiphase Systems, R. M. Ottenbrite, L. A. Utracki, and S. Inoue Eds. pp. 149, Carl Hanser, New York (1987)
17 C. Liu, J. Zhang, J. He, and G. Hu, Polymer, 44, 7529 (2003)   DOI   ScienceOn
18 Y. Lin, A. M. Rao, B. Sadanadan, E. A. Kenik, and Y. P. Sun, J. Phys. Chem. B, 106, 1294 (2002)   DOI   ScienceOn
19 K. S. Cole and R. H. Cole, J. Chem. Phys., 9, 341 (1941)   DOI
20 J. W. Jang, S. H. Kim, C. E. Lee, T. J. Lee, C. J. Lee, H. S. Kim, E. H. Kim, and S. J. Noh, J. Korean Phys. Soc., 42, S985 (2003)
21 C. P. Poole, Jr. and F. J. Owens, Introduction to Nanotechnology, p. 114, Wiley, New Jersey (2003)
22 J. W. Kang and H. J. Hwang, J. Korean Phys. Soc., 46, 875 (2005)
23 L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett., 73, 3842 (1998)   DOI   ScienceOn
24 D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, Appl Phys. Lett., 76, 2868 (2000)   DOI   ScienceOn
25 E. S. Choi, J. S. Brooks, D. J. Eaton, M. S. Al-Haik, M. Y. Hussaini, H. Garmestani, D. Li, and K. Dahmen, J. Appl. Phys., 94, 6034 (2003)   DOI   ScienceOn
26 T. Satio, K. Matsushige, and K. Tanake, Physica B, 323, 208 (2002)
27 F. H. Gojny, J. Nastalczyk, Z. Roslaniec, and K. Schelte, Chem. Phys. Lett., 370, 820 (2003)   DOI   ScienceOn
28 H. C. Zeng, in Handbook of Organic-Inorganic Hybird Materials and Nanocoomposites Vol. 2, H. S. Nalwa Ed., pp.151, American Scientific Pubilisher, Los Angeles (2003)
29 E. T. Thostenson and T. W. Chou, J. Phys. D: Appl. Phys., 35, L77 (2002)   DOI
30 A. T. Mutel and M. R. Kamal, in Two Phase Polymer Systems, A. Utracki Ed. pp. 305, Carl Hanser, New York (1991)
31 P. Poulin, B. Vigolo, and P. Launois, Carbon, 40, 1741 (2002)   DOI   ScienceOn
32 C. D. Han and K. W. Lem, Polym. Eng. Rev., 2, 135 (1983)
33 H. K. Chuang and C. D. Han, J. Appl. Polym. Sci., 29, 2205 (1984)   DOI   ScienceOn
34 M. Abdel-Goad and P. Potschke, J. Non-Newtonian Fluid Mech., 128, 2 (2005)   DOI   ScienceOn