• Title/Summary/Keyword: Multi-radio

Search Result 791, Processing Time 0.02 seconds

A Frequency Resource Assignment Algorithm for FH Radio Using Isotropic Multi Dimension Array (등방 다차원 배열을 이용한 FH 무전기용 주파수 자원 할당 알고리즘)

  • Lee, Seong-Min;Han, Joo-Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2006
  • To reduce the interferences between the radio equipments which are operated in frequency hopping mode, the frequency resource should be assigned to each equipment without overlapping when several groups of radio equipments operate in the same area. If the radio equipments are in a different area, the partial frequency overlaying can be permitted. From the isotropic multi-dimensional array, several frequency assignment tables can be extracted for a same area. Also several tables can be extracted for different areas. Since there can be no overlapped frequencies between the tables for the same area, no interference between the radio equipments in an area is guaranteed. The frequencies overlapped between 2 tables for 2 different areas are pre-planed as required. The interference performance in frequency hopping radio can be controlled as desired using the proposed Frequency Resource Assignment Algorithm using Isotropic multi-dimensional Array.

ISRMC-MAC: Implementable Single-Radio, Multi-Channel MAC Protocol for WBANs

  • Cho, Kunryun;Jeon, Seokhee;Cho, Jinsung;Lee, Ben
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1052-1070
    • /
    • 2016
  • Wireless Body Area Networks (WBANs) have received a lot of attention as a promising technology for medical and healthcare applications. A WBAN should guarantee energy efficiency, data reliability, and low data latency because it uses tiny sensors that have limited energy and deals with medical data that needs to be timely and correctly transferred. To satisfy this requirement, many multi-radio multi-channel MAC protocols have been proposed, but these cannot be implemented on current off-the-shelf sensor nodes because they do not support multi-radio transceivers. Thus, recently single-radio multi-channel MAC protocols have been proposed; however, these methods are energy inefficient due to data duplication. This paper proposes a TDMA-based single-radio, multi-channel MAC protocol that uses the Unbalanced Star+Mesh topology to satisfy the requirements of WBANs. Our analytical analysis together experiments using real sensor nodes show that the proposed protocol outperforms existing methods in terms of energy efficiency, reliability, and low data latency.

Throughput Capacity of a Wireless Multi-hop Relay Network using Cognitive Radio (Cognitive Radio 무선 다중홉 릴레이 네트워크의 Throughput 용량)

  • Hassan, Md. Imrul;Song, Ju-Bin;Kim, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.33-39
    • /
    • 2007
  • In this paper, we investigate the throughput capacity of a multi-hop relay with cognitive radio (CR) enabled relay stations (RS). We suggest a TDMA/FDMA based frame structure where RSs dynamically select unused channels to communicate with the base station (BS) using CR techniques to analyze the throughput capacity. We develop the throughput capacity model for the proposed system based on utilization factor. The analytical results based on those equations show significant improvement in throughput capacity for CR enabled multi-hop relay system.

A Multi-Dimensional Radio Resource Scheduling Scheme for MIMO-OFDM Wireless Systems

  • Li, Lei;Niu, Zhisheng
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.401-409
    • /
    • 2006
  • Orthogonal frequency division multiplexing (OFDM) and multiple input multiple output (MIMO) technologies provide additional dimensions of freedom with spectral and spatial resources for radio resource management. Multi-dimensional radio resource management has recently been identified to exploit the full dimensions of freedom for more flexible and efficient utilization of scarce radio spectrum while provide diverse quality of service (QoS) guarantees. In this work, a multi-dimensional radio resource scheduling scheme is proposed to achieve above goals in hybrid orthogonal frequency division multiple access (OFDMA) and space division multiple access (SDMA) systems. Cochannel interference (CCI) introduced by frequency reuse under SDMA is eliminated by frequency division and time division between highly interfered users. This scheme maximizes system throughput subjected to the minimum data rate guarantee. for heterogeneous users and transmit power constraint. By numerical examples, system throughput and fairness superiority of the our scheduling scheme are verified.

Introducing Software Defined Radio to 4GWireless: Necessity, Advantage, and Impediment

  • Zamat, Hassan;Nassar, Carl R.
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.344-350
    • /
    • 2002
  • This work summarizes the current state of the art in software radio for 4G systems. Specifically, this work demonstrates that classic radio structures, e.g., heterodyne reception, homodyne reception, and their improved implementations, are inadequate selections for multi-mode reception. This opens the door to software defined radio, a novel reception architecture which promises ease in multi-band, multi-protocol design. The work presents the many advantages of such an architecture, including flexibility, reduced cost via component reduction, and improved reliability via, e.g., the elimination of environmental instability. The work also explains the limitations that currently curtail the widespread use of SDR, including issues surrounding A/D converters, management of software and power, and clock generation. This provides direction for future research to enable the broad applicability of SDR in 4G cellular and beyond.

Joint Scheduling and Rate Optimization in Multi-channel Multi-radio Wireless Networks with Contention-based MAC

  • Bui, Dang Quang;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1716-1721
    • /
    • 2008
  • Currently, Wireless Networks have some nice characteristics such as multi-hop, multi-channel, multi-radio, etc but these kinds of resources are not fully used. The most difficulty to solve this issue is to solve mixed integer optimization. This paper proposes a method to solve a class of mixed integer optimization for wireless networks by using AMPL modeling language with CPLEX solver. The result of method is scheduling and congestion control in multi-channel multi-radio wireless networks.

  • PDF

Cognitive Routing for Multi-hop Mobile Cognitive Radio Ad Hoc Networks

  • Lee, Jae-Joon;Lim, Jaesung
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.155-161
    • /
    • 2014
  • Mobility can lead to continual loss of data and service interruptions during communications in multi-hop cognitive radio networks. Mobility of primary users (PUs) or cognitive users (CUs) requires adjustment of multi-hop communications among CUs to avoid any interference to PUs. To provide durable and reliable data routing that ensures continuous network service, we propose mobility-aware cognitive routing (MCR) for multi-hop cognitive radio networks. MCR examines the risk level of each node against interference regions and selects the most reliable path for data delivery using a Markov predictor. Through simulation, we verify that the proposed scheme can avoid route destruction preemptively and achieve reliable data delivery.

Cooperative Incumbent System Protection MAC Protocol for Multi-channel Ad-hoc Cognitive Radio Networks

  • Yi, Ke;Hao, Nan;Yoo, Sang-Jo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.1976-1996
    • /
    • 2011
  • Cognitive radio (CR) MAC protocol provides access control of unused spectrum resources without causing interference to primary users. To achieve this goal, in this paper a TDMA based cooperative multi-channel cognitive radio MAC (MCR-MAC) protocol is proposed for wireless ad hoc networks to provide reliable protection for primary users by achieving cooperative detection of incumbent system signals around the communication pair. Each CR node maintains transmission opportunity schedules and a list of available channels that is employed in the neighbor discovery period. To avoid possible signal collision between incumbent systems and cognitive radio ad hoc users, we propose a simple but efficient emergency notification message exchanging mechanism between neighbor CR nodes with little overhead. Our simulation results show that the proposed MCR-MAC can greatly reduce interference with primary users and remarkably improve the network throughput.

Effect of Fiber Dispersion and Self-phase Modulation in Multi-channel Subcarrier Multiplexed Optical Signal Transmission

  • Kim, Kyoung-Soo;Jeong, Ji-Chai;Lee, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • We investigated the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) in multi-channel subcarrier multiplexed (SCM) optical transmission systems. We theoretically analyzed the transmission characteristics of the SCM signals with the effect of SPM and chromatic dispersion in a single-mode optical fiber by numerical simulations based on the nonlinear Schrodinger equation. The numerical simulation results revealed that the effect of fiber dispersion and SPM could occur independently between subcarrier channels in two-channel SCM systems for small optical modulation index (OMI) and large channel spacing. However, for large OMI, small channel spacing, and large fiber launching power, we found a performance degradation of the two-channel system compared to that of a single-channel system. These parameters are therefore important for the optimization of multi-channel SCM systems applicable to radio over fiber networks.

A Study on Large Area Black Silicon Solar Cell Using Radio-Frequency Multi-Hollow cathode Plasma System (Radio Frequency Multi-Hollow Cathode 플라즈마 시스템을 이용한 대면적 블랙 실리콘 태양전지에 관한 연구)

  • 유진수;임동건;양계준;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.496-500
    • /
    • 2003
  • A low-cost, large area, random, maskless texturing scheme independent of crystal orientation is expected to significantly impact terrestrial photovoltaic technology. We investigated silicon surface microstructures formed by reactive ion etching (RIE) in Multi-Hollow cathode system. Desirable texturing effect has been achieved when radio-frequency (rf) power of about 20 Watt per one hollow cathode glow is applied for our RF Multi-Hollow cathode system. The black silicon etched surface shows almost zero reflectance in the visible region as well as in near IR region. The etched silicon surface is covered by columnar microstructures with diameters from 50 to 100 nm and depth of about 500 nm. We have successfully achieved 11.7% efficiency of mono-crystalline silicon solar cell and 10.2% multi-crystalline silicon solar cell.