• Title/Summary/Keyword: Multi-point FORM

Search Result 116, Processing Time 0.026 seconds

Statistical Estimation of the Number of Contending Stations and its Application to a Multi-round Contention Resolution Scheme

  • Jang, Seowoo;Choi, Jin-Ghoo;Yoon, Sung-Guk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4259-4271
    • /
    • 2016
  • With the increased popularity of IEEE 802.11 WLAN, the density of the WLAN devices per access point has also increased, resulting in throughput performance degradation. One of the solutions to the problem is improving the protocol efficiency by a using multi-round contention scheme. This paper first discusses how to estimate the number of contending stations in a WLAN network by using minimum elapsed backoff counter values that can be easily monitored by each station. An approximate closed form expression is derived for the number of active contending stations using the smallest backoff counter value in the network. We then apply this result to adapt the number of contending rounds according to the network loading level to enhance the throughput performance of a multi-round contention scheme. Through simulation, we show that the accuracy of the estimation algorithm depends on the contention parameters of W and the number of backoff counter observing samples, and found a reasonable value for each parameter. We clearly show that our adaptive multi-round contention scheme outperforms the standard contention scheme that uses a fixed number of rounds.

System Reliability Analysis of Slope Considering Multiple Failure Modes (다중 파괴모드를 고려한 사면의 시스템 신뢰도해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.71-80
    • /
    • 2013
  • This work studies the reliability analysis of a slope that considers multiple failure modes. The analysis consists of two parts. First, significant failure modes that contribute most to system reliability are determined. The so-called barrier method proposed by Der Kiureghian and Dakessian to identify significant failure modes successively is employed. Second, the failure probability for the slope is estimated on the basis of the identified significant failure modes and corresponding design points. For reliability problems entailing multiple design points, failure probability can be estimated by the multi-point first-order reliability method (FORM), Ditlevsen's bounds method, and Monte Carlo simulation. In this paper, a comparative study between these methods has been made through example problems. Analysis results showed that while a soil slope may have a large number of potential slip surfaces, its system failure probability is usually governed by a few significant slip surfaces. Therefore, the most important step in the system reliability analysis for a soil slope is to identify all the significant failure modes in an efficient way.

A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture (자유곡면을 가공하는 공작기계 체적오차의 일반화 해석)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF

Reduction of Current Harmonic Occurred form between Uninterruptible Powers Supply and Rectifier Load (정류기 부하와 무정전전원장치 사이에 발생되는 Current Harmonic 저감)

  • 곽철훈;반한식;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.41-44
    • /
    • 1999
  • The main purpose of the UPS is to supply independent and stable power to connected equipment. In installing and operating the UPS system, songle module, three phase UPS in more benefit than multi module, songle phase UPS in the point of volume and cost. However, when supplying Rectifier with output power form three phase UPS, by connecting auto-transformer, occurred harmonic and ripple current makes output filter damaged and leads to nonlinear current coasted by unbalance load. Therefor, in this paper the aim of concentring compound-wound transformer and harmonic filter is supplying liner current by reducing harmonic and ripple current and improving unbalance in voltage and distortion in current wave.

  • PDF

A Study on the FCP Surface Error according to the Thickness of the Lower Silicone Plate (하부 실리콘 플레이트의 두께에 따른 FCP 표면 오차에 관한 연구)

  • Kim, Ji-Hye;Jeong, Kyeong-Tae;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.31-32
    • /
    • 2023
  • Recently, with the digitalization of the construction industry, free-form building construction technology is developing. However, the technology for manufacturing free-form concrete panels is still insufficient. In this study, the surface error of the FCP according to the thickness of the lower silicon plate, which is a component of the existing lower multi-point press, was analyzed in order to manufacture a precise FCP. As a result of the analysis, it was found that the thinner the thickness, the larger the error value. These results can be used as a basis for existing research and are expected to be used for research on high-quality FCP manufacturing technology.

  • PDF

Estimations of Parameters in Multi-component Series Systems Using Masked Data

  • Sarhan Ammar M.;Abouammoh A.M.;Al-Ameri Mansour
    • International Journal of Reliability and Applications
    • /
    • v.7 no.1
    • /
    • pp.41-53
    • /
    • 2006
  • The exact cause of the system's failure is often unknown in the masked system lifetime data. In such type of data, there are two observable quantities, namely (i) the systems time to failure and (ii) the set of systems components that contains the component, which might cause the system to fail. Our objective in this paper is to use the maximum likelihood procedure in the presence of masked data to make inference for the reliability of the system's components. We assume a multi-component series system where each component has a constant failure rate. Different cases that permit for closed form solutions of point estimates are considered. The results obtained in this paper generalize other published results.

  • PDF

Wavelet identification for the abnormal seismic wave component of rock burst

  • Yunliang Tan;Wei Yan;Tongbin Zhao
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.437-440
    • /
    • 2003
  • As we know, roof is composed of heterogeneous rock. When roof fractures, a large amount of energy would be released in the form of seismic wave. How to identify the abnormal signal of seismic wave is a much difficult problem, there are many methods used usually, such as Fourier Transformation, filter technique etc., but abnormal signal can't be recognized accurately. In this paper, multi-resolution wavelet technique is used to identify the first and second variation point, based on the Lipschitz $\alpha$. A living example analysis shows, multi-resolution wavelet technique can identify the abnormal signal of seismic wave effectively in different scale, and the omen of roof fall can be grasped in order to forecast the roof fall accurately. It provides a new idea for the predication of catastrophe on rock mechanics and engineering.

  • PDF

Human-Tracking Behavior of Mobile Robot Using Multi-Camera System in a Networked ISpace (공간지능화에서 다중카메라를 이용한 이동로봇의 인간추적행위)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.310-316
    • /
    • 2007
  • The paper proposes a human-following behavior of mobile robot and an intelligent space (ISpace) is used in order to achieve these goals. An ISpace is a 3-D environment in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to track a walking human using distributed intelligent sensors as stably and precisely as possible. The moving objects is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to track the walking human, the linear and angular velocities are estimated and utilized. The computer simulation and experimental results of estimating and trackinging of the walking human with the mobile robot are presented.

  • PDF

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.