• Title/Summary/Keyword: Multi-plasma

Search Result 365, Processing Time 0.031 seconds

A Novel Multi-Level Type Energy Recovery Sustaining Driver for AC Plasma Display Panel (새로운 AC PDP용 멀티레벨 에너지 회수회로)

  • Hong, Soon-Chang;Jung, Woo-Chong;Kang, Kyoung-Woo;Yoo, Jong-Gul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.71-78
    • /
    • 2005
  • This paper proposes a novel multi-level energy recovery sustaining driver for AC PDP(Plasma Display Panel), which solves the problems of the conventional multi-level sustaining driver. While the conventional circuit improves the voltage md current stress of the switching elements in Weber circuit not only there are parasitic resonant currents between resonant inductors and parasitic capacitance and hard switching, but also the changing period between 0 and sustain voltage is too long. Comparing the proposed circuit with the conventional circuit, the number of components are reduced and the parasitic resonant currents in resonant inductors are eliminated Moreover the hard switching problem is solved by using CIM(Current Injection Method) and the operating frequency will be high as much as possible by removing Vs/2 sustain period. And the circuit operations of the proposed circuit are analyzed for each mode and the validity is verified by the simulations using PSpice program.

Effect of O2 Plasma Treatments of Carbon Supports on Pt-Ru Electrocatalysts

  • Park, Soo-Jin;Park, Jeong-Min;Seo, Min-Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.331-334
    • /
    • 2010
  • In the present study, carbon supports mixed with purified multi-walled carbon nanotubes (MWNTs) and carbon blacks (CBs) were used to improve the cell performance of direct methanol fuel cells (DMFCs). Additionally, the effect of $O_2$ plasma treatment on CBs/MWNTs supports was investigated for different plasma RF powers of 100, 200, and 300 W. The surface and structural properties of the CBs/MWNTs supports were characterized by FT-IR, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and inductive coupled plasma-mass spectrometer (ICP-MS). The electrocatalytic activity of PtRu/CBs/MWNTs catalysts was investigated by cyclic voltammetry measurement. In the experimental results, the oxygen functional groups of the supports were increased with increasing plasma RF power, while the average Pt particle size was decreased owing to the improvement of dispersibility of the catalysts. The electrochemical activity of the catalysts for methanol oxidation was gradually improved by the larger available active surface area, itself due to the introduction of oxygen functional groups. Consequently, it was found that $O_2$ plasma treatments could influence the surface properties of the carbon supports, resulting in enhanced electrocatalytic activity of the catalysts for DMFCs.

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF

Comparison on Autogenous Weldability of Stainless Steel using High Energy Heat Source (고에너지 열원에 따른 스테인리스강의 제살용접특성 비교)

  • Kim, Jong-Do;Lee, Chang-Je;Song, Moo-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1076-1082
    • /
    • 2012
  • Today the welding for LNG carrier is known to be possible using arc and plasma arc welding process. But because of the lower energy density, arc welding is inevitable to multi-pass welding for thick plate and has a limit of welding speed compared to laser which is high energy density heat source. When thick plate is welded, weld defect by multi-pass welding and heat-affected zone by high heat-input were formed. Therefore one-pass welding by key-hole has been considered to work out the problems. It is possible for Laser, electron beam, plasma process to do key-hole welding. Nowadays, plasma process has been used for welding membrane of cargo tank for LNG carrier instead of arc process. Recently, many studies have examined to apply laser process to welding of membrane. In this paper, weldability, microstructure and mechanical properties of stainless steel for LNG carrier welded by fiber laser were compared to those by plasma. As a result, although the laser welding has several times faster speed, similar properties and smaller weld and heat affected zone were obtained. Consequently, this study proves the superiority of fiber laser welding for LNG carrier.

Industrial application of WC-TiAlN nanocomposite films synthesized by cathodic arc ion plating system on PCB drill

  • Lee, Ho. Y.;Kyung. H. Nam;Joo. S. Yoon;Jeon. G. Han;Young. H. Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2001.06a
    • /
    • pp.3-3
    • /
    • 2001
  • Recently TiN, TiAlN, CrN hardcoatings have adapted many industrial application such as die, mold and cutting tools because of good wear resistant and thermal stability. However, in terms of high speed process, general hard coatings have been limited by oxidation and thermal hardness drop. Especially in the case of PCB drill, high speed cutting and without lubricant process condition have not adapted these coatings until now. Therefore more recently, superhard nanocomposite coating which have superhard and good thermal stability have developed. In previous works, WC-TiAlN new nanocomposite film was investigated by cathodic arc ion plating system. Control of AI concentration, WC-TiAlN multi layer composite coating with controlled microstructure was carried out and provides additional enhancement of mechanical properties as well as oxidation resistance at elevated temperature. It is noted that microhardness ofWC-TiA1N multi layer composite coating increased up to 50 Gpa and got thermal stability about $900^{\circ}C$. In this study WC-TiAlN nanocomposite coating was deposited on PCB drill for enhancement of life time. The parameter was A1 concentration and plasma cleaning time for edge sharpness maintaining. The characteristic of WC-TiAlN film formation and wear behaviors are discussed with data from AlES, XRD, EDS and SEM analysis. Through field test, enhancement of life time for PCB drill was measured.

  • PDF

The Hydrogen Generation's Characteristics using Plasma Reactor of Multi-needle Electrode Type (다중침전극형 플라즈마 반응기를 이용한 수소발생 특성)

  • Park, Jae-Yoon;Kim, Jong-Seok;Jung, Jang-Gun;Goh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1246-1251
    • /
    • 2004
  • This paper is investigated about the effect of carrier gas type and the humidity for generating hydrogen gas. The vibration of the water surface is more powerful with increasing applied voltage. In this experimental reactor which is made of multi-needle and plate, the maximum acquired hydrogen production rate is about 3500 ppm. In the experimental result of generating hydrogen gas by non-thermal plasma reactor, the rate of generating hydrogen gas is different with what kind of carrier gas is. We used two types of carrier gas, such as $N_2$ and He. $N_2$ as carrier gas is more efficient to generate hydrogen gas than He because $N_2$ is reacted with $O_2$, which is made from water dissociation. In comparison with water droplet by humidifier and without water droplet by humidifier, the generation of hydrogen gas is decreased in case of water droplet by humidifier. That is the result that the energy for water dissociation is reduced on water surface because a part of plasma energy is absorbed at the small water molecular produced from humidifier.

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

A PIC Simulation Study for Electron Preacceleration at Weak Quasi-Perpendicular Galaxy Cluster Shocks

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2021
  • In the outskirts of galaxy clusters, weak shocks with Ms < ~3 appear as radio relics where the synchrotron radiation is emitted from cosmic-ray (CR) electrons. To understand the production of CR electrons through the so-called diffusive shock acceleration (DSA), the electron injection into the DSA process at shocks in the hot intracluster medium (ICM) has to be described. However, the injection remains as an unsolved, outstanding problem. To explore this problem, 2D Particle-in-Cell (PIC) simulations were performed. In this talk, we present the electron preacceleration mechanism mediated by multi-scale plasma waves in the shock transition zone. In particular, we find that the electron preacceleration is effective only in the supercritical shocks, which have the sonic Mach number Ms > Mcrit ≈ 2.3 in the high-beta (β~100) plasma of the ICM, because the Alfven ion cyclotron instability operates and hence multi-scale plasma waves are induced only in such supercritical shocks. Our findings will help to understand the nature of radio relics in galaxy clusters.

  • PDF

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

New Driving Method in AC-PDP (교류형 플라즈마 디스플레이 패널에서의 새로운 구동방식)

  • Kim, Jae-Sung;Hwang, Elyun-Tae;Kim, Gun-Su;Seo, Jeong-Hyun;Lee, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.170-173
    • /
    • 2003
  • The driving method is one of the most important factors of PDP, so various driving methods have been developed to improve the duality of PDP Nowadays, most of PDPs apply to ADS (Address and Display period Separated) driving method. In this paper, a new driving method that divides scan lines into multi-Blocks is suggested. The proposed driving method in this paper can drive 14 sub-fields per 1 TV field in SD panel, 16 sub-fields per 1 TV field in HD panel. And sufficient Address margin can be obtained.

  • PDF