• 제목/요약/키워드: Multi-phase Behavior

검색결과 115건 처리시간 0.027초

모델기반 시스템공학을 응용한 대형복합기술 시스템 개발 (Application of Model-Based Systems Engineering to Large-Scale Multi-Disciplinary Systems Development)

  • 박중용;박영원
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.689-696
    • /
    • 2001
  • Large-scale Multi-disciplinary Systems(LMS) such as transportation, aerospace, defense etc. are complex systems in which there are many subsystems, interfaces, functions and demanding performance requirements. Because many contractors participate in the development, it is necessary to apply methods of sharing common objectives and communicating design status effectively among all of the stakeholders. The processes and methods of systems engineering which includes system requirement analysis; functional analysis; architecting; system analysis; interface control; and system specification development provide a success-oriented disciplined approach to the project. This paper shows not only the methodology and the results of model-based systems engineering to Automated Guided Transit(AGT) system as one of LMS systems, but also propose the extension of the model-based tool to help manage a project by linking WBS (Work Breakdown Structure), work organization, and PBS (Product Breakdown Structure). In performing the model-based functional analysis, the focus was on the operation concept of an example rail system at the top-level and the propulsion/braking function, a key function of the modern automated rail system. The model-based behavior analysis approach that applies a discrete-event simulation method facilitates the system functional definition and the test and verification activities. The first application of computer-aided tool, RDD-100, in the railway industry demonstrates the capability to model product design knowledge and decisions concerning key issues such as the rationale for architecting the top-level system. The model-based product design knowledge will be essential in integrating the follow-on life-cycle phase activities. production through operation and support, over the life of the AGT system. Additionally, when a new generation train system is required, the reuse of the model-based database can increase the system design productivity and effectiveness significantly.

  • PDF

보로나이징처리에 따른 Inconel 625 초합금강의 기계적 특성 향상 (Effect of Boronizing on Inconel 625 Superalloy for Improving Mechanical Properties)

  • 김대욱;김유성;이인식;차여훈;정경훈;차병철
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.316-320
    • /
    • 2019
  • The effect of boronizing on mechanical properties including wear behavior and hardness of Inconel 625 superalloy were investigated. The cross-section observation demonstrated that boronized samples were composed of multi-phase boride layer (CrxBx, Ni2B), diffusion layer, and substrate. The boride and diffusion layers were increased with increasing treatment temperature and holding time. However, CrxBx layer was partially peeled off when it treated 1000℃. Subsequently, boride layer was completely separated from substrate with increasing temperature and time. A partial peeling of CrxBx layer is not noticeably degraded mechanical properties. In particular, friction coefficient and wear resistance were enhanced in lack of CrxBx phase. Therefore, these results suggest that a Ni2B phase mainly contribute to wear behavior on boronized Inconel 625 superalloy.

플레어 각도에 따른 청수현상의 발생과정 및 갑판 위 유동특성 변화에 대한 실험적 연구 (Experimental Study on Variations in Behavior of Green Water and Flow Kinematics on Deck with Various Flare Angles)

  • 이강남;정광효;서성부;김문성
    • 한국해양공학회지
    • /
    • 제32권2호
    • /
    • pp.77-83
    • /
    • 2018
  • In this study, a series of experiments were performed to investigate the variations in the behavior of green water generation and the flow kinematics of bubbly flow on deck with various flare angles. The experiments were conducted in a 2-D wave flume using a simplified model of a BW Pioneer FPSO operating in the Gulf of Mexico, with a 100-year return period wave condition. The green water phenomena were captured with a high speed CCD camera. The variations in the behavior of the green water generation were investigated with various flare angles, and the horizontal mean velocity profiles of bubbly flow on deck obtained using bubble image velocimetry (BIV) were provided. The differences in flow kinematics of bubbly flow on deck were analyzed with various flare angles.

Reactor core analysis through the SP3-ACMFD approach Part II: Transient solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.230-237
    • /
    • 2020
  • In this part, an implicit time dependent solution is presented for the Boltzmann transport equation discretized by the analytic coarse mesh finite difference method (ACMFD) over the spatial domain as well as the simplified P3 (SP3) for the angular variable. In the first part of this work we proposed a SP3-ACMFD approach to solve the static eigenvalue equations which provide the initial conditions for temp dependent equations. Having solved the 3D multi-group SP3-ACMFD static equations, an implicit approach is resorted to ensure stability of time steps. An exponential behavior is assumed in transverse integrated equations to establish a relationship between flux moments and currents. Also, analytic integration is benefited for the time-dependent solution of precursor concentration equations. Finally, a multi-channel one-phase thermal hydraulic model is coupled to the proposed methodology. Transient equations are then solved at each step using the GMRES technique. To show the sufficiency of proposed transient SP3-ACMFD approximation for a full core analysis, a comparison is made using transport peers as the reference. To further demonstrate superiority, results are compared with a 3D multi-group transient diffusion solver developed as a byproduct of this work. Outcomes confirm that the idea can be considered as an economic interim approach which is superior to the diffusion approximation, and comparable with transport in results.

Wheelchair Multi-layer headrest foam 특성과 상해지수간 상관관계 분석 (Correlation Analysis between Wheelchair Multi-layer Headrest Foam Properties and Injury Index)

  • 조성욱;지승민;전성식
    • Composites Research
    • /
    • 제36권4호
    • /
    • pp.253-258
    • /
    • 2023
  • 교통수단의 발전은 이동이 불편한 장애인들의 이동권 보장을 실현하였지만 차량사고시 발생할 수 있는 장애인 탑승객의 안전 향상은 일반 승객좌석에 비해 낮다고 할 수 있다. 특히 갑자기 발생할 수 있는 후방 추돌 사고의 경우 장애인 탑승객의 머리와 목 부상에 취약한 것이 현실이다. 이에 본 연구에서는 휠체어 운송 차량의 후방 추돌 시 차량내 장애인 탑승객의 머리와 목 상해지수 개선을 위해 headrest를 관상면으로 3등분한 multi-layer headrest foam이 제안되었다. 간이 모델을 통한 저속 후방 추돌 해석을 통해 foam의 다양한 압축 특성을 부여하기 위한 stress scale factor의 범위가 선정되었으며, 해당 범위를 parameter로 지정하여 GA최적화가 수행되었다. 최적화결과를 통해 layer의 압축 특성에 따른 HIC와 NIC간의 상간관계 분석이 이뤄졌으며, HIC는 Front layer, NIC는 Mid layer의 압축 특성에 가장 민감하게 반응하였고 Rear layer의 압축 특성은 가장 낮게 나타났다. Validation model에 일반headrest와 최적화된 multi-layer headrest를 각각 배치하여 저속 후방 추돌 sled test 해석을 수행하였으며, 일반headrest대비 multi-layer headrest에서의 HIC와 NIC가 낮게 도출되었다. multi-layer headrest에서의 압축 거동 역시 명확하게 나타나 multi-layer headrest가 일반headrest대비 머리와 목의 상해지수 개선에 효과적인 것이 검증되었다.

Eulerian-Lagrangian 다상 유동해석법에 의한 피에조 인젝터의 노즐 내부 비정상 캐비테이션 유동해석 (Analysis of Unsteady Cavitating Flows in Fuel Injection Nozzle of Piezo-driven Injector by Eulerian-Lagrangian Multi-phase Method)

  • 이진욱;민경덕;강건용
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.38-45
    • /
    • 2004
  • This study describes the analysis results of unsteady cavitating flows behavior inside nozzle of the prototype piezo-driven injector. This piezo-driven injector has been recognised as one of the next generation diesel injector due to a higher driven efficiency than the conventional solenoid-driven injector. The three dimensional geometry model along the central cross-section regarding of one injection hole has been used to simulate the cavitating flows for injection time by at fully transient simulation with cavitation model. The cavitation model incorporates many of the fundamental physical processes assumed to take place in cavitating flows. The simulations performed were both fully transient and 'pseudo' steady state, even if under steady state boundary conditions. We could analyze the effect the pressure drop to the sudden acceleration of fuel, which is due to the fastest response of needle, on the degree of cavitation existed in piezo-driven injector nozzle

  • PDF

Microstructure control and change in thermal conductivity of 8YSZ/SiO2 multi-compositional coating by suspension plasma spraying

  • Jeon, Hak-Beom;Lee, In-Hwan;An, Gye Seok;Oh, Yoon-Suk
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.450-454
    • /
    • 2018
  • In recent years, thermal insulation coating technology for automotive engine parts has received significant attention as a means of improving the thermal efficiency of automotive engines. One of the characteristics of thermal insulation coatings is their low thermal conductivity, and, materials such as YSZ (Yttria-stabilized zirconia), which have low thermal conductivity, are used for this purpose. This research presents a study of the changes in the microstructure and thermal conductivity of $8YSZ/SiO_2$ multi compositional thermal insulation coating for different compositions, and particle size distributions of suspension, when it is subjected to suspension plasma spraying. To obtain a porous coating structure, the mixing ratio of 8YSZ and $SiO_2$ particles and the particle sizes of the $SiO_2$ were changed. The microstructure, phase formation behavior, porosity and thermal conductivity of the coatings were analyzed. The porosities were found to be 1.2-32.1%, and the thermal conductivities of the coatings were 0.797-0.369 W/mK. The results of the study showed that the microstructures of the coatings were strongly influenced by the particle size distributions, and that the thermal conductivities of the coatings were greatly impacted by the microstructures of the coatings.

수중 운동체의 거동 및 표면 압력하중 예측에 관한 수치적 연구 (A Computational Study About Behavior of an Underwater Projectile and Prediction of Surficial Pressure Loading)

  • 조성민;권오준
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.405-412
    • /
    • 2017
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the platform. Qualitative analysis was conducted for the time history of vapor volume fraction distributions. Uncorking pressure around the projectile and platform was analyzed to predict impact force acting on the surfaces. The results of 6DOF analysis presented similar tendency with the surficial pressure distributions.

고압에서의 분무의 증발 및 연소 현상에 관한 연구 (Study on Vaporization and Combustion of Spray in High Pressure Environment)

  • 왕태중;백승욱
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

Rice Crop Monitoring Using RADARSAT

  • Suchaichit, Waraporn
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.37-37
    • /
    • 2003
  • Rice is one of the most important crop in the world and is a major export of Thailand. Optical sensors are not useful for rice monitoring, because most cultivated areas are often obscured by cloud during the growing period, especially in South East Asia. Spaceborne Synthetic Aperture Radar (SAR) such as RADARSAT, can see through regardless of weather condition which make it possible to monitor rice growth and to retrieve rice acreage, using the unique temporal signature of rice fields. This paper presents the result of a study of examining the backscatter behavior of rice using multi-temporal RADARSAT dataset. Ground measurements of paddy parameters and water and soil condition were collected. The ground truth information was also used to identify mature rice crops, orchard, road, residence, and aquaculture ponds. Land use class distributions from the RADARSAT image were analyzed. Comparison of the mean DB of each land use class indicated significant differences. Schematic representation of temporal backscatter of rice crop were plotted. Based on the study carried out in Pathum Thani Province test site, the results showed variation of sigma naught from first tillering vegatative phase until ripenning phase. It is suggested that at least, three radar data acquisitions taken at 3 stages of rice growth circle namely; those are at the beginning of rice growth when the field is still covered with water, in the ear differentiation period, and at the beginning of the harvest season, are required for rice monitoring. This pilot project was an experimental one aiming at future operational rice monitoring and potential yield predicttion.

  • PDF