DOI QR코드

DOI QR Code

Effect of Boronizing on Inconel 625 Superalloy for Improving Mechanical Properties

보로나이징처리에 따른 Inconel 625 초합금강의 기계적 특성 향상

  • Kim, Dae-Wook (Advanced Manufacturing Process R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology(KITECH)) ;
  • Kim, Yu-Sung (Advanced Manufacturing Process R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology(KITECH)) ;
  • Lee, In-Sik (Advanced Manufacturing Process R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology(KITECH)) ;
  • Cha, Yeo-Hun (School of Materials Science & Engineering, University of Ulsan) ;
  • Jeong, Kyeong-Hoon (School of Materials Science & Engineering, University of Ulsan) ;
  • Cha, Byung-Chul (Advanced Manufacturing Process R&D Group, Ulsan Regional Division, Korea Institute of Industrial Technology(KITECH))
  • 김대욱 (한국생산기술연구원 울산지역본부 첨단정형공정그룹) ;
  • 김유성 (한국생산기술연구원 울산지역본부 첨단정형공정그룹) ;
  • 이인식 (한국생산기술연구원 울산지역본부 첨단정형공정그룹) ;
  • 차여훈 (울산대학교 첨단소재공학부) ;
  • 정경훈 (울산대학교 첨단소재공학부) ;
  • 차병철 (한국생산기술연구원 울산지역본부 첨단정형공정그룹)
  • Received : 2019.11.06
  • Accepted : 2019.12.27
  • Published : 2019.12.31

Abstract

The effect of boronizing on mechanical properties including wear behavior and hardness of Inconel 625 superalloy were investigated. The cross-section observation demonstrated that boronized samples were composed of multi-phase boride layer (CrxBx, Ni2B), diffusion layer, and substrate. The boride and diffusion layers were increased with increasing treatment temperature and holding time. However, CrxBx layer was partially peeled off when it treated 1000℃. Subsequently, boride layer was completely separated from substrate with increasing temperature and time. A partial peeling of CrxBx layer is not noticeably degraded mechanical properties. In particular, friction coefficient and wear resistance were enhanced in lack of CrxBx phase. Therefore, these results suggest that a Ni2B phase mainly contribute to wear behavior on boronized Inconel 625 superalloy.

Keywords

References

  1. B. GEDDES, H. LEON, X. HUANG, Superalloys alloying and performance, ASM International Materials Park, Ohio, (2010).
  2. H. EISELSTEIN, D. TILLACK, Superalloy 718, 625 and various derivatives, TMS, Warrendale, (1991).
  3. M. DONACIHE, S. DONACIHE, Superalloys A Technical Guide, 2 ed., ASM International, (2002).
  4. Special Metals Corporation, INCONEL and INCOLOY are Trademarks of the Special Metals Corporation Group of Companies, (2013).
  5. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability, Mater. Sci. Eng. A 509 (2009) 98-104. https://doi.org/10.1016/j.msea.2009.01.009
  6. M. Zielinska, J. Sieniawski, M. Yavorska, M. Motyka, Influence of chemical composition of nickel based superalloy on the formation of aluminide coatings, Arch. Metall. Mater. 56 (2011) 193-197. https://doi.org/10.2478/v10172-011-0023-y
  7. K. Kaushik, Y. Sandeep, N.S.C. Sri, M. Manikandan, M. Arivarasu, R.K. Devendranath, N. Arivazhagan, Performance of plasma spray coatings on Inconel 625 in air oxidation and molten salt environment at $800^{\circ}C$, Int. J. Chem. Tech Res. 6 (5) (2014) 2744-2749.
  8. B. Zhang, G. Bi, S. Nai, C. Sun, J.Wei, Microhardness and microstructure evolution of $TiB_2$ reinforced Inconel 625/$TiB_2$ composite produced by selective laser melting, Opt. Laser Technol. 80 (2016) 186-195. https://doi.org/10.1016/j.optlastec.2016.01.010
  9. P. Aw, A. Batchelor, N. Loh, Structure and tribological properties of plasma nitride surface films on Inconel 718, Surf. Coat. Technol. 89 (1997) 70-76. https://doi.org/10.1016/S0257-8972(96)02937-4
  10. N. Makuch, M. Kulka, Microstructural characterization and some mechanical properties of gas borided Inconel 600-alloy, Appl. Surf. Sci. 314 (2014) 1007-1018. https://doi.org/10.1016/j.apsusc.2014.06.109
  11. I. Campos, J. Oseguera, U. Figueroa, J. Garcia, O. Bautista, G. Kelemenis,. Kinetic study of boron diffusion in the paste-boriding process, Mater. Sci. Eng. A, 352 (2003) 261-265. https://doi.org/10.1016/S0921-5093(02)00910-3
  12. L. Segers, A. Fontana, R. Winand, Electrochemical boriding of iron in molten salts, Electrochim. Acta 36 (1991) 41-47. https://doi.org/10.1016/0013-4686(91)85177-9
  13. P. Kaestner, J. Olfe, K. Rie, Plasma-assisted boriding of pure titanium and $TiAl_6V_4$, Surf. Coat. Technol. 142 (2001) 248-252. https://doi.org/10.1016/S0257-8972(01)01244-0
  14. Y. S. Youn, H. S. Kim, S. S. Kim, The aluminizung of boronized low carbon steel, J. Kor. Inst. Surf. Eng. 29 (1996) 120-131.
  15. W. Muhammad, K. Hussain, A. Tauqir, U. Haq, A. Akhan, Evaluation of halide-activated pack boriding of Inconel 722, Metall. Mater. Trans. A 30 (1999) 670-675. https://doi.org/10.1007/s11661-999-0059-z
  16. K. H. Kim, M. S. Son, J. H. Yoon, E. S. Byon, D. I. Kwon, A study on the boronizing treatment of the microalloyed steel, J. Kor. Inst. Surf. Eng. 29 (1996) 268-277.
  17. C. Meric, S. Sahin, B. Backir, N. S. Koksal, Investigation of the boronizing effect on the abrasive wear behavior in cast irons, Materials & Design, 27 (2006) 751-757. https://doi.org/10.1016/j.matdes.2005.01.018
  18. V. Jain, G. Sundararajan, Influence of the pack thickness of the boronizing mixture on the boriding of steel, Surf. Coat. Technol., 149 (2002) 21-26. https://doi.org/10.1016/S0257-8972(01)01385-8