• Title/Summary/Keyword: Multi-objective Evolutionary Algorithm

Search Result 76, Processing Time 0.026 seconds

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Journal of Navigation and Port Research
    • /
    • v.35 no.6
    • /
    • pp.501-507
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching is assigning AGVs to requested job to minimizing the delay of QCs and the travel distance of AGVs. Due to the high dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching decisions. In this situation, approaches based on a single rule are widely used due to its simplicity and small computational cost. However, these approaches have a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. The Proposed strategy consists of multiple decision criteria. A multi-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.

Evolutionary-base finite element model updating and damage detection using modal testing results

  • Vahidi, Mehdi;Vahdani, Shahram;Rahimian, Mohammad;Jamshidi, Nima;Kanee, Alireza Taghavee
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.339-350
    • /
    • 2019
  • This research focuses on finite element model updating and damage assessment of structures at element level based on global nondestructive test results. For this purpose, an optimization system is generated to minimize the structural dynamic parameters discrepancies between numerical and experimental models. Objective functions are selected based on the square of Euclidean norm error of vibration frequencies and modal assurance criterion of mode shapes. In order to update the finite element model and detect local damages within the structural members, modern optimization techniques is implemented according to the evolutionary algorithms to meet the global optimized solution. Using a simulated numerical example, application of genetic algorithm (GA), particle swarm (PSO) and artificial bee colony (ABC) algorithms are investigated in FE model updating and damage detection problems to consider their accuracy and convergence characteristics. Then, a hybrid multi stage optimization method is presented merging advantages of PSO and ABC methods in finding damage location and extent. The efficiency of the methods have been examined using two simulated numerical examples, a laboratory dynamic test and a high-rise building field ambient vibration test results. The implemented evolutionary updating methods show successful results in accuracy and speed considering the incomplete and noisy experimental measured data.

Shape Design of Micro Electrostatic Actuator using Multidimensional Design Windows (다차원 설계윈도우 탐색법을 이용한 마이크로 액추에이터 형상설계)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Daisuke Ishihara;Yoshimura, Shinobu;Yagawa, Genki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1796-1801
    • /
    • 2001
  • For micro-machines, very few design methodologies based on optimization hale been developed so far. To overcome the difficulties of design optimization of micro-machines, the search method for multi-dimensional design window (DW)s is proposed. The proposed method is defined as areas of satisfactory design solutions in a design parameter space, using both continuous evolutionary algorithms (CEA) and the modified K-means clustering algorithm . To demonstrate practical performance of the proposed method, it was applied to an optimal shape design of micro electrostatic actuator of optical memory. The shape design problem has 5 design parameters and 5 objective functions, and finally shows 4 specific design shapes and design characters based on the proposed DWs.

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

Optimum Design of Integer and Fractional-Order PID Controllers for Boost Converter Using SPEA Look-up Tables

  • Amirahmadi, Ahmadreza;Rafiei, Mohammadreza;Tehrani, Kambiz;Griva, Giovanni;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.160-176
    • /
    • 2015
  • This paper presents a method of designing optimal integer- and fractional-order proportional-integral-derivative (FOPID) controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of desired technical goals.

Meta-Heuristic Algorithms for a Multi-Product Dynamic Lot-Sizing Problem with a Freight Container Cost

  • Kim, Byung-Soo;Lee, Woon-Seek
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.3
    • /
    • pp.288-298
    • /
    • 2012
  • Lot sizing and shipment scheduling are two interrelated decisions made by a manufacturing plant and a third-party logistics distribution center. This paper analyzes a dynamic inbound ordering problem and shipment problem with a freight container cost, in which the order size of multiple products and single container type are simultaneously considered. In the problem, each ordered product placed in a period is immediately shipped by some freight containers in the period, and the total freight cost is proportional to the number of containers employed. It is assumed that the load size of each product is equal and backlogging is not allowed. The objective of this study is to simultaneously determine the lot-sizes and the shipment schedule that minimize the total costs, which consist of production cost, inventory holding cost, and freight cost. Because the problem is NP-hard, we propose three meta-heuristic algorithms: a simulated annealing algorithm, a genetic algorithm, and a new population-based evolutionary meta-heuristic called self-evolution algorithm. The performance of the meta-heuristic algorithms is compared with a local search heuristic proposed by the previous paper in terms of the average deviation from the optimal solution in small size problems and the average deviation from the best one among the replications of the meta-heuristic algorithms in large size problems.

Optimizing dispatching strategy based on multicriteria heuristics for AGVs in automated container terminal (자동화 컨테이너 터미널의 복수 규칙 기반 AGV 배차 전략 최적화)

  • Kim, Jeong-Min;Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.06a
    • /
    • pp.218-219
    • /
    • 2011
  • This paper focuses on dispatching strategy for AGVs(Automated Guided Vehicle). The goal of AGV dispatching problem is allocating jobs to AGVs to minimizing QC delay and AGV total travel distance. Due to the highly dynamic nature of container terminal environment, the effect of dispatching is hard to predict thus it leads to frequent modification of dispatching results. Given this situation, single rule-based approach is widely used due to its simplicity and small computational cost. However, single rule-based approach has a limitation that cannot guarantee a satisfactory performance for the various performance measures. In this paper, dispatching strategy based on multicriteria heuristics is proposed. Proposed strategy consists of multiple decision criteria. A muti-objective evolutionary algorithm is applied to optimize weights of those criteria. The result of simulation experiment shows that the proposed approach outperforms single rule-based dispatching approaches.

  • PDF

A Two-tier Optimization Approach for Decision Making in Many-objective Problems (고도 다목적 문제에서의 의사 결정을 위한 이중 최적화 접근법)

  • Lee, Ki-Baek
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.21-29
    • /
    • 2015
  • This paper proposes a novel two-tier optimization approach for decision making in many-objective problems. Because the Pareto-optimal solution ratio increases exponentially with an increasing number of objectives, simply finding the Pareto-optimal solutions is not sufficient for decision making in many-objective problems. In other words, it is necessary to discriminate the more preferable solutions from the other solutions. In the proposed approach, user preference-oriented as well as diverse Pareto-optimal solutions can be obtained as candidate solutions by introducing an additional tier of optimization. The second tier of optimization employs the corresponding secondary objectives, global evaluation and crowding distance, which were proposed in previous works, to represent the users preference to a solution and the crowdedness around a solution, respectively. To demonstrate the effectiveness of the proposed approach, decision making for some benchmark functions is conducted, and the outcomes with and without the proposed approach are compared. The experimental results demonstrate that the decisions are successfully made with consideration of the users preference through the proposed approach.

Numerical Optimization of a Transonic Axial Compressor with Casing Grooves for Improvement of Operating Stability (케이싱 그루브가 장착된 천음속 축류압축기의 작동 안정성 향상을 위한 수치최적화)

  • Kim, Jin-Hyuk;Choi, Kwang-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.31-38
    • /
    • 2011
  • Optimization using a hybrid multi-objective evolutionary algorithm coupled with response surface approximation has been performed to improve the performance of a transonic axial compressor with circumferential casing grooves. In order to optimize the operating stability and peak adiabatic efficiency of the compressor with circumferential casing grooves, tip clearance, angle distribution at blade tip and the depth of the circumferential casing grooves are selected as design variables. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations. The trade-off between two objectives with the interaction of blade and casing treatment is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the axial compressor without the casing treatment.

Multi Area Power Dispatch using Black Widow Optimization Algorithm

  • Girishkumar, G.;Ganesan, S.;Jayakumar, N.;Subramanian, S.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.113-130
    • /
    • 2022
  • Sophisticated automation-based electronics world, more electrical and electronic devices are being used by people from different regions across the universe. Different manufacturers and vendors develop and market a wide variety of power generation and utilization devices under different operating parameters and conditions. People use a variety of appliances which use electrical energy as power source. These appliances or gadgets utilize the generated energy in different ratios. Night time the utilization will be less when compared with day time utilization of power. In industrial areas especially mechanical industries or Heavy machinery usage regions power utilization will be a diverse at different time intervals and it vary dynamically. This always causes a fluctuation in the grid lines because of the random and intermittent use of these apparatus while the power generating apparatus is made to operate to provide a steady output. Hence it necessitates designing and developing a method to optimize the power generated and the power utilized. Lot of methodologies has been proposed in the recent years for effective optimization and economical load dispatch. One such technique based on intelligent and evolutionary based is Black Widow Optimization BWO. To enhance the optimization level BWO is hybridized. In this research BWO based optimize the load for multi area is proposed to optimize the cost function. A three type of system was compared for economic loads of 16, 40, and 120 units. In this research work, BWO is used to improve the convergence rate and is proven statistically best in comparison to other algorithms such as HSLSO, CGBABC, SFS, ISFS. Also, BWO algorithm best optimize the cost parameter so that dynamically the load and the cost can be controlled simultaneously and hence effectively the generated power is maximum utilized at different time intervals with different load capacity in different regions of utilization.