Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2016.06.008

Numerical optimization of Wells turbine for wave energy extraction  

Halder, Paresh (Wave Energy and Fluid Engineering Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras)
Rhee, Shin Hyung (Research Institute of Marine Systems Engineering, Department of Naval Architecture and Ocean Engineering, Seoul National University)
Samad, Abdus (Wave Energy and Fluid Engineering Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.9, no.1, 2017 , pp. 11-24 More about this Journal
Abstract
The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.
Keywords
Blade sweep; Wells turbine; Optimization; Wave energy; CFD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Valipour, M., Banihabib, M.E., Behbahani, S.M.R., 2013. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433-441. http://dx.doi.org/10.1016/j.jhydrol.2012.11.017.   DOI
2 Valipour, M., Montazar, A., 2012a. An evaluation of SWDC and WinSRFR models to optimize of infiltration parameters in furrow irrigation. Am. J. Sci. Res. 69, 128-142.
3 Valipour, M., Montazar, A.A., 2012b. Optimize of all effective infiltration parameters in furrow irrigation using visual basic and genetic algorithm programming. Aust. J. Basic Appl. Sci. 6, 132-137.
4 Valipour, M., Montazar, A.A., 2012c. Sensitive analysis of optimized infiltration parameters in SWDC model. Adv. Environ. Biol. 6, 2574-2581.
5 Wang, D., Bai, J.Q., Hua, J., Sun, Z.W., Qiao, L., 2014. Aerodynamic shape optimization design of the swept wing based on the kriging surrogate model. Appl. Mech. Mater. 444, 1277-1282.
6 Webster, M., Gato, L.M.C., 2001. The effect of rotor blade shape on the performance of the Wells turbine. Int. J. Offshore Polar Eng. 11, 227-230. http://dx.doi.org/10.1016/S0960-1481(00)00163-4.   DOI
7 Webster, M., Gato, L.M.C., 1999a. The effect of rotor blade sweep on the performance of the Wells turbine. Int. J. Offshore Polar Eng. 9, 233-240. http://dx.doi.org/10.1016/S0960-1481(00)00163-4.   DOI
8 Webster, M., Gato, L.M.C., 1999b. The effect of rotor blade shape on the performance of the Wells turbine. In: Proceedings of the Ninth (1999) International Offshore and Polar Engineering Conference. Brest, France, May 30-June 4, 1999, pp. 169-173. http://dx.doi.org/10.1016/S0960-1481(00)00163-4.   DOI
9 Badhurshah, R., Samad, A., 2015. Multiple surrogate based optimization of a bidirectional impulse turbine for wave energy conversion. Renew. Energy 74, 749-760. http://dx.doi.org/10.1016/j.renene.2014.09.001.   DOI
10 Ansys CFX, 2010. Release 11.0: Ansys CFX-solver Theory Guide. ANSYS.
11 Bellary, S.A.I., Husain, A., Samad, A., 2014. Effectiveness of meta-models for multi-objective optimization of centrifugal impeller. J. Mech. Sci. Technol. 28, 4947-4957.   DOI
12 Benini, E., Biollo, R., 2007. Aerodynamics of swept and leaned transonic compressor-rotors. Appl. Energy 84, 1012-1027. http://dx.doi.org/10.1016/j.apenergy.2007.03.003.   DOI
13 Brito-Melo, A., Gato, L.M.C., Sarmento, A.J.N.A., 2002. Analysis of Wells turbine design parameters by numerical simulation of the OWC performance. Ocean. Eng. 29, 1463-1477. http://dx.doi.org/10.1016/S0029-8018(01)00099-3.   DOI
14 Gato, L.M.C.,Webster, M., 2001. An experimental investigation into the effect of rotor blade sweep on the performance of the variable-pitch Wells turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 215, 611-622. http://dx.doi.org/10.1243/0957650011538848.   DOI
15 Collette, Y., Siarry, P., 2003. Multiobjective optimization: principles and case studies. Decision Engineering. Springer Science & Business Media. http://dx.doi.org/10.1007/978-3-662-08883-8.   DOI
16 Curran, R., Gato, L.M.C., 1997. The energy conversion performance of several types of Wells turbine designs. Proc. Inst. Mech. Eng. Part A J. Power Energy 211, 133-145. http://dx.doi.org/10.1243/0957650971537051.   DOI
17 Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. John Wiley & Sons.
18 Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V., 2007. Ensemble of surrogates. Struct. Multidiscip. Optim. 33, 199-216. http://dx.doi.org/10.1007/s00158-006-0051-9.   DOI
19 Gorissen, D., Couckuyt, I., Laermans, E., Dhaene, T., 2010. Multiobjective global surrogate modeling, dealing with the 5-percent problem. Eng. Comput. 26, 81-98. http://dx.doi.org/10.1007/s00366-009-0138-1.   DOI
20 Halder, P., Samad, A., Kim, J.H., Choi, Y.S., 2015. High performance ocean energy harvesting turbine design-a new casing treatment scheme. Energy 86, 219-231. http://dx.doi.org/10.1016/j.energy.2015.03.131.   DOI
21 Jeong, S., Murayama, M., Yamamoto, K., 2005. Efficient optimization design method using kriging model. J. Aircr. 42, 413-420. http://dx.doi.org/10.2514/1.C10485E.   DOI
22 Kim, T., Setoguchi, T., Kinoue, Y., Kaneko, K., 2001. Effects of blade geometry on performance of wells turbine for wave power conversion. J. Therm. Sci. 10, 293-300. http://dx.doi.org/10.1007/s11630-001-0035-4.   DOI
23 Matrices, S., 2012. The Language of Technical Computing. MathWorks, Inc., pp. 4-9. http//www.mathworks.com
24 Kim, T.H., Setoguchi, T., Kaneko, K., Raghunathan, S., 2002. Numerical investigation on the effect of blade sweep on the performance of Wells turbine. Renew. Energy. http://dx.doi.org/10.1016/S0960-1481(00)00210-X.   DOI
25 Marjavaara, D.B., Lundstr€om, S.T., Goel, T., Mack, Y., Shyy, W., 2007. Hydraulic turbine diffuser shape optimization by multiple surrogate model approximations of pareto fronts. J. Fluids Eng. 129, 1228. http://dx.doi.org/10.1115/1.2754324.   DOI
26 Martin, J.D., Simpson, T.W., 2005. Use of kriging models to approximate deterministic computer models. AIAA J. 43, 853-863. http://dx.doi.org/10.2514/1.8650.   DOI
27 Mohamed, M.H., Janiga, G., Pap, E., Thevenin, D., 2011. Multi-objective optimization of the airfoil shape of Wells turbine used for wave energy conversion. Energy 36, 438-446. http://dx.doi.org/10.1016/j.energy.2010.10.021.   DOI
28 Mohamed, M.H., Shaaban, S., 2013. Optimization of blade pitch angle of an axial turbine used for wave energy conversion. Energy 56, 229-239. http://dx.doi.org/10.1016/j.energy.2013.04.035.   DOI
29 Mohamed, H.M., Shaaban, S., 2014. Numerical optimization of axial turbine with self-pitch- controlled blades used for wave energy conversion. Int. J. Energy Res. 38, 592-601. http://dx.doi.org/10.1002/er.   DOI
30 Myers, R.H., Montgomery, D.C., 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley. John Wiley & Sons, New York. http://dx.doi.org/10.1016/S0378-3758(97)81631-X.   DOI
31 Orr, M.J.L., 1996. Introduction to Radial Basis Function Networks.
32 Samad, A., Kim, K.Y., 2008. Shape optimization of an axial compressor blade by multi-objective genetic algorithm. Proc. Inst. Mech. Eng. Part A J. Power Energy 222, 599-611. http://dx.doi.org/10.1243/09576509JPE596.   DOI
33 Raghunathan, S., 1995. The Wells air turbine for wave energy conversion. Prog. Aerosp. Sci. 31, 335-386. http://dx.doi.org/10.1016/0376-0421(95)00001-F.   DOI
34 Raghunathan, S., Tan, C.P., 1985. Effect of blade profile on the performance of the Wells self-rectifying air turbine. Int. J. Heat. Fluid Flow. 6, 369-379. http://dx.doi.org/10.1016/0142-727X(85)90026-8.   DOI
35 Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P., 2012. Design and analysis of computer experiments. Stat. Sci. 4, 409-423. http://dx.doi.org/10.1214/ss/1177012413.   DOI
36 Samad, A., Kim, K.Y., Goel, T., Haftka, R.T., Shyy, W., 2008. Multiple surrogate modeling for axial compressor blade shape optimization. J. Propuls. Power 24, 301-310. http://dx.doi.org/10.2514/1.28999.   DOI
37 Suzuki, M., Arakawa, C., 2008. Influence of blade profiles on flow around Wells turbine. Int. J. Fluid Mach. Syst. 1, 148-154. http://dx.doi.org/10.5293/IJFMS, 1.1.148.   DOI
38 Taha, Z., Sugiyono, Sawada, T., 2010. A comparison of computational and experimental results of Wells turbine performance for wave energy conversion. Appl. Ocean. Res. 32, 83-90. http://dx.doi.org/10.1016/j.apor.2010.04.002.   DOI
39 Takao, M., Setoguchi, T., Kinoue, Y., Kaneko, K., 2007. Wells turbine with end plates for wave energy conversion. Ocean. Eng. 34, 1790-1795. http://dx.doi.org/10.1016/j.oceaneng.2006.10.009.   DOI
40 Takao, M., Thakker, A., Abdulhadi, R., Setoguchi, T., 2006. Effect of blade profile on the performance of a large-scale Wells turbine for wave-energy conversion. Int. J. Sustain. Energy 25, 53-61. http://dx.doi.org/10.1080/14786450600593295.   DOI
41 Thakker, A., Abdulhadi, R., 2007. Effect of blade profile on the performance of Wells turbine under unidirectional sinusoidal and real sea flow conditions. Int. J. Rotat. Mach. 2007 http://dx.doi.org/10.1155/2007/51598.   DOI
42 Torresi, M., Camporeale, S.M., Pascazio, G., Fortunato, B., 2004. Fluid Dynamic Analysis of a Low Solidity Wells Turbine. In: 59 Congresso ATI, Genova, Italy.
43 Torresi, M., Camporeale, S.M., Strippoli, P.D., Pascazio, G., 2008. Accurate numerical simulation of a high solidity Wells turbine. Renew. Energy 33, 735-747. http://dx.doi.org/10.1016/j.renene.2007.04.006.   DOI
44 Valipour, M., Banihabib, E., Behbahani, R., 2012. Monthly inflow forecasting using autoregressive artificial neural network. J. Appl. Sci. 12, 2139-2147.   DOI
45 Simpson, T.W., Mauery, T.M., Korte, J., Mistree, F., 2001. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J. 39, 2233-2241. http://dx.doi.org/10.2514/3.15017.   DOI