• Title/Summary/Keyword: Multi-objective

Search Result 2,150, Processing Time 0.023 seconds

Clinical Study on the Floating and Sinking Pulse Detection with Piezoresistive Sensors and Contact Pressure Control Robot (압저항 센서와 가압조절 로봇을 이용한 부침맥 검출에 관한 임상연구)

  • Lee Si-Woo;Lee Yu-Jung;Lee Hae-Jung;Kang Hee-Jung;Kim Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1673-1675
    • /
    • 2005
  • The pulse diagnosis is an important and universal method in Oriental medicine. Nevertheless, because of characteristic that depends on subjective sense of Oriental medicine doctor (OMD), it is not recognized by objective basis. The Korean Institute of Oriental Medicine(KIOM) and Daeyo Medi. Co. Ltd. developed the 3-D Mac using arrey piezoresistive sensors and multi-axial robot. 133 healthy subjects participated in this study, 75 males and 58 females, between 20 and 70 years of age. All subjects were relaxed in a supine position on a comfortable chair for twenty minutes before the measurement was taken. The measured position is the radial artery of subject's left wrist and the position is called Chon, Kwan and Chuck in Oriental medicine. To detect floating and sinking pulse, we established coefficient of floating and sinking(CFS). CFS means relative position of maximum pulse pressure in PH curve. The lower CFS value means that the pulse has floating tendency. There was significant diffence between CFS and diagnosis of floating-sinking pulse by OMD(p=0.020). CFS value of over 40's group was significantly larger than those of 20's and 30's(p=0.000). There was no significant difference between male and female(p=0.061).

System Networking for the Monitoring and Analysis of Local Climatic Information in Alpine Area (강원고랭지 농업기상 감시 및 분석시스템 구축)

  • 안재훈;윤진일;김기영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.3
    • /
    • pp.156-162
    • /
    • 2001
  • In order to monitor local climatic information, twelve automated weather stations (AWS) were installed in alpine area by the Alpine Agricultural Experiment Station, Rural Development Administration (RDA), at the field of major crop located in around highland area, and collected data from 1993 to 2000. Hourly measurements of air and soil temperature (underground 10 cm,20 cm), relative humidity, wind speed and direction, precipitation, solar radiation and leaf wetness were automatically performed and the data could be collected through a public phone line. Datalogger was selected as CR10X (Campbell scientific, LTD, USA) out of consideration for sensers' compatibility, economics, endurance and conveniences. All AWS in alpine area were combined for net work and daily climatic data were analyzed in text and graphic file by program (Chumsungdae, LTD) on 1 km $\times$ 1 km grid tell basis. In this analysis system, important multi-functionalities, monitoring and analysis of local climatic information in alpine area was emphasized. The first objective was to obtain the output of a real time data from AWS. Secondly, daily climatic normals for each grid tell were calculated from geo-statistical relationships based on the climatic records of existing weather stations as well as their topographical informations. On 1 km $\times$ 1 km grid cell basis, real time climatic data from the automated weather stations and daily climatic normals were analyzed and graphed. In the future, if several simulation models were developed and connected with this system it would be possible to precisely forecast crop growth and yield or plant disease and pest by using climatic information in alpine area.

  • PDF

Stability Evaluation of Bump Crossing and Loading of Proto-type Mini-Forwarder by Computer Simulation (컴퓨터 시뮬레이션을 이용한 소형 임내차 시작기의 장애물 통과 및 적재 안정성 평가)

  • Park H. K.;Kim K. U.;Shim S. B.;Kim J. W.;Park M. S.;Song T. Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.366-372
    • /
    • 2005
  • The objective of this study was to evaluate the bump crossing and loading stability of a proto-type mini-forwarder under development. The evaluation was performed by computer simulation using a multi-body dynamic analysis program, Recur- Dyn 5.21. The proto-type was modeled and its properties such as mass, mass center, and mass moment of inertia were determined using 3D CAD modeler, Solid Edge 8.0. The $\%$ errors of masses, mass center, mass moment of inertia, and vertical motion of the model were within less than $10\%$ and the model's behavior agreed relatively well with those of the proto-type when traversing over a rectangular bump. Using the validated model, bump crossing of the proto-type was simulated and the loading limit was determined. It was found that effects of the shapes of bump on the bump crossing performance was insignificant within the practical heights of bumps. Stability of bump crossing increased with loading. However, loading of longer logs than 2.7 m made the crossing unstable because the ends of logs contacted ground when traversing over the bump. The maximum loading capacity of the proto-type was estimated to be 7.8 kN of 2.7 m long logs.

Regularized Adaptive High-resolution Image Reconstruction Considering Inaccurate Subpixel Registration (부정확한 부화소 단위의 위치 추정 오류에 적응적인 정규화된 고해상도 영상 재구성 연구)

  • Lee, Eun-Sil;Byun, Min;Kang, Moon-Gi
    • Journal of Broadcast Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • The demand for high-resolution images is gradually increasing, whereas many imaging systems yield aliased and undersampled images during image acquisition. In this paper, we propose a high-resolution image reconstruction algorithm considering inaccurate subpixel registration. A regularized Iterative reconstruction algorithm is adopted to overcome the ill-posedness problem resulting from inaccurate subpixel registration. In particular, we use multichannel image reconstruction algorithms suitable for application with multiframe environments. Since the registration error in each low-resolution has a different pattern, the regularization parameters are determined adaptively for each channel. We propose a methods for estimating the regularization parameter automatically. The preposed algorithm are robust against the registration error noise. and they do not require any prior information about the original image or the registration error process. Experimental results indicate that the proposed algorithms outperform conventional approaches in terms of both objective measurements and visual evaluation.

Impact of Mathematical Modeling Schemes into Accuracy Representation of GPS Control Surveying (수학적 모형화 기법이 GPS 기준점 측량 정확도 표현에 미치는 영향)

  • Lee, Hungkyu;Seo, Wansoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.445-458
    • /
    • 2012
  • The objective of GPS control surveying is ultimately to determine coordinate sets of control points within targeted accuracy through a series of observations and network adjustments. To this end, it is of equivalent importance for the accuracy of these coordinates to be realistically represented by using an appropriate method. The accuracy representation can be quantitively made by the variance-covariance matrices of the estimates, of which features are sensitive to the mathematical models used in the adjustment. This paper deals with impact of functional and stochastic modeling techniques into the accuracy representation of the GPS control surveying with a view of gaining background for its standardization. In order to achieve this goal, mathematical theory and procedure of the single-baseline based multi-session adjustment has been rigorously reviewed together with numerical analysis through processing real world data. Based on this study, it was possible to draw a conclusion that weighted-constrained adjustment with the empirical stochastic model was among the best scheme to more realistically describe both of the absolute and relative accuracies of the GPS surveying results.

An Efficient Optimization Technique for Node Clustering in VANETs Using Gray Wolf Optimization

  • Khan, Muhammad Fahad;Aadil, Farhan;Maqsood, Muazzam;Khan, Salabat;Bukhari, Bilal Haider
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4228-4247
    • /
    • 2018
  • Many methods have been developed for the vehicles to create clusters in vehicular ad hoc networks (VANETs). Usually, nodes are vehicles in the VANETs, and they are dynamic in nature. Clusters of vehicles are made for making the communication between the network nodes. Cluster Heads (CHs) are selected in each cluster for managing the whole cluster. This CH maintains the communication in the same cluster and with outside the other cluster. The lifetime of the cluster should be longer for increasing the performance of the network. Meanwhile, lesser the CH's in the network also lead to efficient communication in the VANETs. In this paper, a novel algorithm for clustering which is based on the social behavior of Gray Wolf Optimization (GWO) for VANET named as Intelligent Clustering using Gray Wolf Optimization (ICGWO) is proposed. This clustering based algorithm provides the optimized solution for smooth and robust communication in the VANETs. The key parameters of proposed algorithm are grid size, load balance factor (LBF), the speed of the nodes, directions and transmission range. The ICGWO is compared with the well-known meta-heuristics, Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) for clustering in VANETs. Experiments are performed by varying the key parameters of the ICGWO, for measuring the effectiveness of the proposed algorithm. These parameters include grid sizes, transmission ranges, and a number of nodes. The effectiveness of the proposed algorithm is evaluated in terms of optimization of number of cluster with respect to transmission range, grid size and number of nodes. ICGWO selects the 10% of the nodes as CHs where as CLPSO and MOPSO selects the 13% and 14% respectively.

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Railway Object Recognition Using Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 시설물 인식에 관한 연구)

  • Luo, Chao;Jwa, Yoon Seok;Sohn, Gun Ho;Won, Jong Un;Lee, Suk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • The objective of the research is to automatically recognize railway objects from MLS data in which 9 key objects including terrain, track, bed, vegetation, platform, barrier, posts, attachments, powerlines are targeted. The proposed method can be divided into two main sub-steps. First, multi-scale contextual features are extracted to take the advantage of characterizing objects of interest from different geometric levels such as point, line, volumetric and vertical profile. Second, by considering contextual interactions amongst object labels, a contextual classifier is utilized to make a prediction with local coherence. In here, the Conditional Random Field (CRF) is used to incorporate the object context. By maximizing the object label agreement in the local neighborhood, CRF model could compensate the local inconsistency prediction resulting from other local classifiers. The performance of proposed method was evaluated based on the analysis of commission and omission error and shows promising results for the practical use.

A Study on Balanced Team Formation Method Reflecting Characteristics of Students (학생들의 특성을 반영한 균형적인 팀 편성 방법에 관한 연구)

  • Kim, Jong-hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.55-65
    • /
    • 2019
  • With the advent of the Fourth Industrial Revolution and changes in the educational environment, team-based assignments are increasing in university classes. Effective team formation in team-based class is an important issue that affects students' satisfaction and the effectiveness of education. However, previous studies mostly focused on post analysis on the results of team formation, which makes it difficult to use them in actual classes. In this paper, we present a mathematical model of how to create a balanced team that reflects students' abilities and other characteristics. Characteristic values for assignment may be scores, such as students' proficiency, binary values such as gender, and multi-values, such as grade or department. This problem is a type of equitable partitioning problem, which takes the form of 0-1 integer programming, and the objective function is linear or nonlinear, depending on how balance is achieved. The basic model or the extended model presented can be applied to the situation where teams are balanced in consideration of various factors in actual class.

A Personal Perspective and Our Role in Korean Oriental Medicine (한의학(韓醫學)의 전망(展望)과 우리의 역할(役割))

  • Kang Shun-Su
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 2002
  • The development of Korean Oriental medicine is based upon the accumulation of experience and knowledge gathered over the centuries. The approaches taken are holistic and empirical. There is a need to understand their actions at molecular levels with more rational, objective and scientific studies. Today it appears that Chronic and age-associated diceases may be multifactorial and hence more complex. A different approach may be required. One claimed usage of Korean Oriental medicine is for the treatment and prevention of chronic and age-associated illnesses. Some of the botanical formulas used for this purpose were discovered thousands of years ago and continue to be used today. There are indications that these formulas may indeed be helpful in the treatment or prevention of chronic diseases. This multi-component medicine could not only be very useful meeting the unmet clinical needs but for defining a more synergistic therapy that supports and maintains the bodies natural curative abilities. The potential usefulness of Korean Oriental medicine embodies the belief of maintaining healthy homeostasis of the body through the proper balance of a mixture of chemical at different organs or tissues. This concept is different from western medicine and implies that multiple compounds may act on multiple mechanisms of action to maintain the balance of the complex web of biology. This is very important in view of sciences current direction to integrate fragmented information to develop future medicines. The western and eastern approaches to human health and disease are complementary to each other. The best approach in developing future medicines is to integrate both approaches.

  • PDF