• 제목/요약/키워드: Multi-level classification

검색결과 161건 처리시간 0.03초

방향성 정보 척도를 이용한 적응적 다단 메디안 필터에 관한 연구 (A study on Adaptive Multi-level Median Filter using Direction Information Scales)

  • 김수겸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.611-617
    • /
    • 2004
  • Pixel classification is one of basic image processing issues. The general characteristics of the pixels belonging to various classes are discussed and the radical principles of pixel classification are given. At the same time. a pixel classification scheme based on image direction measure is proposed. As a typical application instance of pixel classification, an adaptive multi-level median filter is presented. An image can be classified into two types of areas by using the direction information measure, that is. smooth area and edge area. Single direction multi-level median filter is used in smooth area. and multi-direction multi-level median filter is taken in the other type of area. What's more. an adaptive mechanism is proposed to adjust the type of the filters and the size of filter window. As a result. we get a better trade-off between preserving details and noise filtering.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

멀티 레벨 기반의 응용 트래픽 분석 방법 (Multi-Level based Application Traffic Classification Method)

  • 오영석;박준상;윤성호;박진완;이상우;김명섭
    • 한국통신학회논문지
    • /
    • 제35권8B호
    • /
    • pp.1170-1178
    • /
    • 2010
  • 최근 네트워크의 고속화와 인터넷 사용자의 증가에 따른 네트워크 망의 트래픽 급증으로 네트워크 자원의 효율적인 관리와 응용 기반 트래픽 분석의 중요성이 갈수록 강조되고 있다. 이미 기존의 많은 논문들에서 효율적인 네트워크 자원 관리를 위한 응용 프로그램 별 트래픽 분석에 대한 다양한 방법론과 알고리즘을 제안하고 있지만 각각의 연구는 한계점을 가지고 있다. 본 논문에서는 멀티 레벨 기반의 응용 트래픽 분석 방법론을 제안한다. 본 연구는 Header, Statistic, Payload 시그니쳐 기반 개별 분석 방법론과 Behavior 알고리즘을 이용한 방법론의 결과를 바탕으로 트래픽 상관관계를 적용하여 추가적인 분석이 가능하게 한다. 각각의 분석 방법론을 통합하여 기존 하나의 분석 시스템이 가지는 단점을 보완함으로써 유연하고 견고한 멀티 레벨 분석 시스템을 구축하였다. 또한 검증 시스템을 통해 학내 네트워크에 적용하여 그 타당성을 증명하였다.

COMPOUNDED METHOD FOR LAND COVERING CLASSIFICATION BASED ON MULTI-RESOLUTION SATELLITE DATA

  • HE WENJU;QIN HUA;SUN WEIDONG
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.116-119
    • /
    • 2005
  • As to the synthetical estimation of land covering parameters or the compounded land covering classification for multi-resolution satellite data, former researches mainly adopted linear or nonlinear regression models to describe the regression relationship of land covering parameters caused by the degradation of spatial resolution, in order to improve the retrieval accuracy of global land covering parameters based on 1;he lower resolution satellite data. However, these methods can't authentically represent the complementary characteristics of spatial resolutions among different satellite data at arithmetic level. To resolve the problem above, a new compounded land covering classification method at arithmetic level for multi-resolution satellite data is proposed in this .paper. Firstly, on the basis of unsupervised clustering analysis of the higher resolution satellite data, the likelihood distribution scatterplot of each cover type is obtained according to multiple-to-single spatial correspondence between the higher and lower resolution satellite data in some local test regions, then Parzen window approach is adopted to derive the real likelihood functions from the scatterplots, and finally the likelihood functions are extended from the local test regions to the full covering area of the lower resolution satellite data and the global covering area of the lower resolution satellite is classified under the maximum likelihood rule. Some experimental results indicate that this proposed compounded method can improve the classification accuracy of large-scale lower resolution satellite data with the support of some local-area higher resolution satellite data.

  • PDF

계절별 위성자료를 이용한 미국 캔자스주 식생 분류 - 하이브리드 접근방식의 적용 - (Kansas Vegetation Mapping Using Multi-Temporal Remote Sensing Data: A Hybrid Approach)

  • 박선엽
    • 대한지리학회지
    • /
    • 제38권5호
    • /
    • pp.667-685
    • /
    • 2003
  • 미국 캔자스주 정부와 연방정부가 필요로 하는 상세한 지표피복 수치지도제작을 위해, Landsat Thematic Mapper 자료를 이용하여 캔자스주 전체를 대상으로 43가지로 분류된 식생군단(vegetation alliance) 수준의 자연식 생지도를 제작하였다. 지도제작 방법으로는 봄, 여름, 가을의 계절별 위성자료를 이용하여 두 단계 분류절차를 거치는 이른바 '하이브리드(hybrid)' 방식을 채택하였다. 이 접근 방법은 첫 단계로 unsupervised classification을 이용, 자연녹지를 농경지로부터 분리해 낸 다음. 두 번째 단계에서 supervised classification, 현장확인조사. 그리고 분류 후 다양한 보강자료를 이용하여 최종적으로 자연식생을 구분ㆍ분류해 내는 것이다. 정확도 평가는 세 가지 분류 수준에서 실행되었는데, 이는 앤더슨 분류단계 I(Anderson level I), 식생군계(vegetation formation), 그리고 식생군단 수준을 포함한다. 확인결과 전반적인 정확도는 51.7%에서 89.4%에 이르는 것으로 조사되었다.

Multi-Class Multi-Object Tracking in Aerial Images Using Uncertainty Estimation

  • Hyeongchan Ham;Junwon Seo;Junhee Kim;Chungsu Jang
    • 대한원격탐사학회지
    • /
    • 제40권1호
    • /
    • pp.115-122
    • /
    • 2024
  • Multi-object tracking (MOT) is a vital component in understanding the surrounding environments. Previous research has demonstrated that MOT can successfully detect and track surrounding objects. Nonetheless, inaccurate classification of the tracking objects remains a challenge that needs to be solved. When an object approaching from a distance is recognized, not only detection and tracking but also classification to determine the level of risk must be performed. However, considering the erroneous classification results obtained from the detection as the track class can lead to performance degradation problems. In this paper, we discuss the limitations of classification in tracking under the classification uncertainty of the detector. To address this problem, a class update module is proposed, which leverages the class uncertainty estimation of the detector to mitigate the classification error of the tracker. We evaluated our approach on the VisDrone-MOT2021 dataset,which includes multi-class and uncertain far-distance object tracking. We show that our method has low certainty at a distant object, and quickly classifies the class as the object approaches and the level of certainty increases.In this manner, our method outperforms previous approaches across different detectors. In particular, the You Only Look Once (YOLO)v8 detector shows a notable enhancement of 4.33 multi-object tracking accuracy (MOTA) in comparison to the previous state-of-the-art method. This intuitive insight improves MOT to track approaching objects from a distance and quickly classify them.

Road Damage Detection and Classification based on Multi-level Feature Pyramids

  • Yin, Junru;Qu, Jiantao;Huang, Wei;Chen, Qiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.786-799
    • /
    • 2021
  • Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.

패턴설계요소기반의 디자인 분류 및 패턴탐색 알고리즘개발 - 맞춤양산형 야구복 자동패턴 설계시스템을 위한 - (Design Classification and Development of Pattern Searching Algorithm Based on Pattern Design Elements - With focus on Automatic Pattern Design System for Baseball Uniforms Manufactured under Custom-MTM System -)

  • 강인애;최경미;전정일
    • 한국의류산업학회지
    • /
    • 제13권5호
    • /
    • pp.734-742
    • /
    • 2011
  • This study has been undertaken as a basic research for automatic pattern design for baseball uniforms manufactured under custom-MTM system, propose building up of a system whereby various partial patterns are combined under an automatic design system and develop a multi-combination type pattern searching algorithm which allows development of a various designs. As a result of this, type classification based on pattern design elements includes side, open, collar, facing and panel type. Design have been divided into coarse classification ranging from level 1 to 7 according to pattern design elements, based on a design distribution chart. Out of 7 such levels, 3 major types determining design which are, more specifically, level 1 sleeve type, level 2 open type and level 3 collar type, have been taken and combined to determine a total of 12 types to be used for design classification codes. Respective name of style and patterns have been coded using alphabet and numerals. Totally, pattern searching algorithm of multi-combination type has been developed whereby combination of patterns belonging to a specific style can be retrieved automatically once that style name is designated on the automatic pattern design system.