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Abstract

Face classification has wide applications in security and surveillance. However, this technique
presents various challenges caused by pose, illumination, and expression changes. Face
recognition with long-distance images involves additional challenges, owing to focusing
problems and motion blurring. Multiple frames under varying spatial or temporal settings
can acquire additional information, which can be used to achieve improved classification
performance. This study investigates the effectiveness of multi-frame decision-level fusion
with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for
each class. The fusion process comprises three stages: score normalization, score validation,
and score combination. Candidate scores are selected during the score validation process, after
the scores are normalized. The score validation process removes bad scores that can degrade
the final output. The selected candidate scores are combined using one of the following
fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed
to demonstrate the robustness of multi-frame decision-level fusion in harsh environments.
Out-of-focus and motion blurring point-spread functions are applied to the test images, to
simulate long-distance acquisition. Experimental results with three facial data sets indicate the
efficiency of the proposed decision-level fusion scheme.
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1. Introduction

Face classification has many applications in security monitoring and intelligent surveillance,
as well as robot vision, image and video retrieval, and human-machine interfaces [1-3].
However, it is challenging to classify a facial image acquired in an uncontrolled setting, such
as those captured at long distances. Unexpected blurring and noise may occur, in addition to
conventional distortions caused by pose, illumination, and expression changes. To address
these issues, various classifiers have been developed based on statistical analysis, including
Fisher linear discriminant analysis (LDA) combined with principal component analysis (PCA)
[4], (often referred to as “Fisherfaces”), as well as the “Eigenfaces” method, which uses only
PCA [1]. Typically, the number of training images is much less than the number of pixels.
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Thus, the Fisher LDA requires a dimensionality reduction such
as PCA in order to avoid the singularity problem, often re-
ferred to as the “small sample size problem.” However, photon-
counting (PC) LDA does not suffer the singularity problem as-
sociated with a small sample size [5]. Originally, PC-LDA had
been developed to train grayscale images and classify a photon-
limited image obtained under low illumination. However, it
has been shown that PC-LDA is also suitable for classifying
grayscale images, which can be obtained by a visible camera
[6].

Decision-level fusion is a high-level data fusion technique
[7, 8]. It aims to increase classification accuracy by combining
multiple outputs from multiple data sets. Compared to single
frames, multi-frames contain additional information acquired
from varying spatial or temporal settings, as illustrated in Fig-
ure 1. Various fusion rules such as maximum, averaging, and
majority-voting rules have been studied in the literature [9, 10].
Bayesian estimation and Dempster-Shafer evidential reasoning
are often adopted for decision-level fusion [11]. In [12], pre-
liminary results are provided for multi-frame recognition with
several data sets.

In this paper, multi-frame decision-level fusion with PC-
LDA is discussed. Decision-level fusion involves three stages:
score normalization, score validation, and score combination.
After the scores are normalized, candidate scores are selected
using a screening process (score validation). Subsequently, the
scores representing the classes are combined to render a final
decision using a fusion rule (score combination). The validation
stage screens out “bad” scores that can degrade classification
performance. The maximum, averaging, and majority voting
fusion rules are investigated in the experiments. Three facial
image datasets (ORL, AR, Yale) [13-15] are employed to verify
the effectiveness of the proposed decision-level fusion scheme.

The remainder of the paper is organized as follows. PC-LDA
is discussed in Section 2. Section 3 describes decision-level
fusion. The experimental results are presented in Section 4. The
conclusion follows in Section 5.

2. Photon Counting LDA

This section briefly describes PC-LDA. PC-LDA realizes the
Fisher criterion using the Poisson distribution, which charac-
terizes the semi-classical photo-detection model [16]. A PC
vector y is a random feature vector corresponding to a nor-
malized image vector x. Thus, the dimensions of x and y are
the same value, which is the number of pixels d; yi is the i-th

(a)

(b)

Figure 1. Configurations of varying (a) spatial setting, (b) temporal
setting.

component of y, and it follows the independent Poisson distribu-
tion with the parameter Npxi, that is, yi ∼ Poisson(Npxi). It
is noted that xi is the normalized intensity at a pixel i such

that
d∑

i=1

xi = 1, and Np indicates the total number of av-

erage photo-counts because the following equation is valid:
d∑

i=1

E(yi) =

d∑
i=1

Npxi = Np.

The between-class covariance measures the separation of
classes as

ΣB
yy = Ej

[
(µy|j − µy)(µy|j − µy)t

]
= N2

pΣB
xx,

(1)

where the class-conditional mean and the mean vectors are
derived as µy|j = Npµx|j and µy = Npµx, respectively; j
indicates a class, and superscript t denotes a matrix transpose.
The within-class covariance matrix measures the concentration
of members in the same class as

ΣW
yy = Ej

{
Ey|j

[
(y − µy|j)(y − µy|j)

t|j
]}

= Np diag(µx) + N2
pΣW

xx,
(2)

where diag(·) denotes a diagonal matrix. Thus, the following
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Fisher criterion can be derived:

WP = arg max
W∈Rd×r

|W tΣB
yyW |

|W tΣW
yyW |

= arg max
W∈Rd×r

|W tΣB
xxW |

|W t[diag(µx)/Np + ΣW
xx]W |

,

(3)

where the column vectors of WP are equivalent to the eigen-
vectors of [diag(µx)/NP + ΣW

xx]−1ΣB
xx corresponding to the

non-zero eigenvalues. It is noted that [diag(µx)/NP + ΣW
xx] is

non-singular because of the non-zero components of µx.

The class decision can be made by maximizing a score func-
tion, as follows:

ĵ =argmax
j=1....C score(j), (4)

where C is the number of classes. The normalized correlation
is adopted as a score function:

scorey(j) =
(W t

pyu)t(W t
pµy|j)

‖W t
Pyu‖

∥∥∥W t
pµy|j

∥∥∥ . (5)

The photo-counting vector yu of an unlabeled object is re-
quired for class decisions, as depicted in Eq. (5). Alternatively,
yu can be estimated with the intensity image vector xu. Be-
cause the minimum mean-squared error (MMSE) estimation is
the conditional mean [17], a point estimation of yui becomes
E(yui|xui) = Npxui, where yui and xui are the i-th compo-
nent of yu and xu, respectively. Thus, Eq. (5) is equivalent to
the following score function:

scorex(j) =
(W t

pxu)t(W t
pµx|j)

‖W t
Pxu‖

∥∥∥W t
pµx|j

∥∥∥ . (6)

The mean-squared (MS) error is the same as the variance of
yui, which is Npxui. The MS error increases as Np increases;
however, the PC-LDA converges to the Fisher LDA as Np goes
to the infinite as

lim
NP→∞

|W tΣB
xxW |

|W t[diag(µx)/Np + ΣW
xx]W |

=
|W tΣB

xxW |
|W tΣW

xxW |
. (7)

Two performance measures are calculated to evaluate the per-
formance of the classifiers. One is the probability of correct
decisions (PD), and the other is the probability of false alarms
(PFA) [6]:

PD(j) =
Number of decision for class j

Number of test images in class j
, (8)

Figure 2. Block diagram showing decision-level fusion.

PFA(j) =

Number of decision for class j,
but are not in class j

Number of test images
in all classes except for class j

. (9)

3. Decision-Level Fusion
Decision-level fusion is composed of three stages: score nor-
malization, validation, and fusion rule processes; these are
illustrated in Figure 2. The scores must be normalized if they
are presented in different metric forms. The candidate scores
are selected during the validation process. Finally, they are com-
bined to create a new score, using a fusion rule. For the score
validation, a score set Sk is composed of nk scores selected
from the output scores of a frame k as follows:

Sk = {scorex(j(1); k), ..., scorex(j(nk); k)}, k = 1, ...,K,

(10)
scorex(j(1); k) > · · · >scorex(j(nk); k)

· · · > scorex(j(C); k),
(11)

where K is the total number of frames. S1,. . . ,SK score sets
are then reassigned to new sets S̃1, ..., S̃C as follows:

S̃j = {scorex(j; 1), scorex(j; 2), ..., scorex(j; ñj)}

j = 1, ..., C,
(12)

where ñj is the number of scores for class j from all K frames.

Therefore,
K⋃

k=1

Si =

C⋃
j=1

S̃j and
K∑

k=1

ni =

C∑
j=1

ñj are held be-

tween the sets Sk and S̃j . The following three fusion rules are
adopted to compute the final score for class j:

scoremax(j) = max{S̃j}, (13)

scoreavg(j) = average{S̃j}, (14)

scorevoting(j) = ñj , (15)
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(a)

(b)

(c)

Figure 3. Sample images from (a) ORL, (b) AR, (c) Yale.

where Eqs. (13)-(15) represent maximum, averaging, and ma-
jority voting rules, respectively.

4. Experimental and Simulation Results

This section describes two types of experiments. The first in-
volves the verification of PC-LDA with a single frame. In the
second experiment, decision-level fusion is tested with artifi-
cially degraded test images.

4.1 Face Classification

Three facial image datasets were used for the performance
evaluation: ORL [13], AR, [14], and Yale [1]. The MATLAB
format was utilized for the Yale database [15]. Figure 3 shows
the sample images of five classes from three datasets. The
datasets contain 40, 100, and 15 classes, respectively; these
classes respectively contain 10, 26, and 11 images. The dataset
image sizes are 92 × 112, 120 × 165, and 64 × 64 pixels,
respectively. Each database was divided into three validation
sets, as shown in Table 1. For the single-frame experiment,
each validation set was trained and all other validation sets
were tested. For example, when three images (image indexes
1–3) in set V1 of the ORL dataset were trained, the other seven

Table 1. Image index in validation sets
Validation set ORL AR Yale

V1 1–3 1–8 1–3
V2 4–6 9–17 4–7
V3 7–10 17–26 8–11

(a)

(b)

(c)

Figure 4. (a) Photon-counting linear discriminant analysis face, (b)
Fisherface, (c) Eigenface.

images (image indexes 4–10) were tested. Figures 4 represents
the five column vectors of the PC-LDA face, Fisherface, and
Eigenface projection matrices, respectively, in the image scale;
three images from set V1 of the ORL dataset were trained to
produce these results. As illustrated in the figures, the PC-LDA
face presents the optimal structural diversity among the three
classifiers, although the Eigen face method is more dependent
on the intensity distribution, compared to the other methods.
Figure 5 shows the average probability of detection (PD) and
average probability of a false alarm (PFA) when each validation
set is trained and other images are tested as a single frame.
The results are compared with the Fisherface and Eigenface
methods.

4.2 Decision-Level Fusion

For the decision-level fusion experiment, test images were
blurred by out-of-focus and motion blurring point-spread func-
tions, to simulate long-distance acquisitions. Out-of-focus im-
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(a)

(b)

(c)

Figure 5. Single frame results of PD and PFA: (a) ORL, (b) AR, (c) YALE.

ages were rendered by applying circular averaging with an 8
pixel radius. Heavy motion blurring was rendered by a filter

approximating the linear motion of a camera for a distance of
20 pixels, with an angle of 45◦ in a counter-clockwise direction
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(a)

(b)

(c)

Figure 6. Sample test images from ORL: (a) original, (b) out-of-focus
blurring, (c) motion blurring.

[6]. Figure 6 shows the sample test images from ORL after blur
rendering.

It was assumed that one pair of test images in the validation
set was obtained by multiple sensors; thus, the total number
of frames (K) was set to two. For example, if the number
of test images was seven in the single-frame experiment, the
number of test pairs for the multi-frame fusion was 21 (= 7C2).
Figure 7 shows the average PD and PFA for the ORL, AR, and
YALE datasets. The maximum rule produced the optimal results
for the original images; however, the majority rule produced
the optimal results when the images were degraded with the
blurring functions.

5. Conclusions

This study investigated the effectiveness of a decision-level
fusion system with multi-frame facial images. Three decision-
level fusion schemes were investigated, following the score
normalization and validation processes. Two types of blurring
point-spread functions were applied to the test images, in or-
der to simulate harsh conditions. The results indicated that
the proposed data fusion scheme improved the classification
performance significantly.
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