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Classification of Land Cover on Korean Peninsula Using
Multi-temporal NOAA AVHRR Imagery
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Abstract : Multitemporal approaches using sequential data acquired over multiple years are essential
for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends.
At any particular time, the response of several classes may be indistinguishable. A harmonic model that
can represent seasonal variability is characterized by four components: mean level, frequency, phase and
amplitude. The trigonometric components of the harmonic function inherently contain temporal
information about changes in land-cover characteristics. Using the estimates which are obtained from
sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal
classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week
composites of the Advanced Very High Resolution Radiometer (AVHRR} imagery over the Korean
peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with
the estimated harmonic components using an unsupervised classification approach based on a
hierarchical clustering algorithm. The results of the classification using the harmonic components show
that the new approach is potentially very effective for identifying land-cover types by the analysis of its
multi-temporal behavior.
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1. Introcuction

A variety of techniques for analyzing remotely-
sensed images have been developed for applications that
include characterizing and classifying land cover.
Statistical pattern recognition techniques have
conventionally been used in classification of remotely-
sensed imagery (Zenzo et al., 1987; Mohn et al., 1987).

Signal variability through time results in artificial
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expressions of differences in land-cover types that often
cause classification errors. The development of multi-
temporal techniques has been primarily motivated by the
difficulty in discriminating between surface material
types based on the spectral signatures at a single point in
time. A typical approach for the analysis of temporal
patterns in remote sensing data involves the visual
examination of temporal sequence of individual pixels

using “temporal profile” plotting (Tucker, ef al., 1990;
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Teng, 1990). Multi-temporal features have also been
exploited through knowledge-based approaches
(Carlotto, 1985; Goldberg er al., 1983). However,
statistical approaches for the analysis of multi-temporal
remotely-sensed images remain largely unexplored, and
few are designed to preserve the sequence contains
abundant, useful information. Multi-temporal techniques
involve concatenating multiple spectral data sets
separated in time and analyzing the combined spectral-
temporal feature vector. One difficulty in the analysis of
multi-temporal image data is encountered with
evaluating the temporal trends simultaneously with
spatial trends. This problem can be resolved by reducing
the dimensionality of the temporal data. One approach is
to use a transformation of multi-temporal data through
the determination of the area-under-the-curve or the
integral of the temporal profile curve (Tucker, ef al.,
1990). In this transformation, temporal trends in the
processes are summarized by a single number that is
associated with the temporal accumulation measure. The
purpose of this paper is to present observational
evidence to show the potential for improved information
extraction with a sequence of multi-temporal data using
an alternative approach.

Reflectance data from the Advanced Very High
Resolution Radiometer (AVHRR) that is deployed on
the NOAA-n series of polar orbiting meteorological
satellites are obtainable globally on a daily basis and
have been shown to have considerable potential for large
scale land vegetation studies. Analyses of the relations
between AVHRR spectral measurements and vegetation
related phenomena have been exceptionally successful
and have encouraged great interest in the AVHRR
sensor as a global vegetation observatory (Horvath et al.,
1982; Townsend and Tucker, 1984). The unique
capacity of the AVHRR to resolve landscape at
reasonable spatial resolution and high temporal
resolution is critical to this type of research. Multi-

temporal remotely-sensed data have been shown to be

successful in monitoring seasonal trends in phonological
processes.

Multi-spectral reflectance data have been transformed
and combined into various vegetation indices to
minimize the variability due to external factors (Tarpley
et al., 1984). The most commonly used vegetation index
is the normalized difference vegetation index (NDVI),
and the NDVI versus time profile then reflects each
vegetation’s seasonal development history. The shape of
the seasonal profile may be used to evaluate the type of
vegetation cover on the basis of the magnitude and
shape of the curve. Sampson (1993) proposed two
indices that characterize the shape of a curve developed
from a seasonal profile of NDVI. These indices
complement the area-under-the-curve integral index by
reflecting the time in seasonal profile and the range of
the NDVI values in the temporal sequence. In this paper,
an alternative approach is investigated to characterize
the temporal profile of NDVI processes as a means of
reducing dimensionality for multi-temporal
classification. The seasonality of vegetation types can be
represented with a harmonic model characterized by
four components: mean level, frequency, amplitude and
phase. The parameterization provides physically
interpretable values with which to characterize the
seasonal development of a vegetated pixel. The mean
index represents the average level of spectral intensity
over the whole period that the data were compiled. The
periodicity of ground cover response is described by the
frequency index. The amplitude and phase indices are
reference values associated with the growing season of a
particular vegetation type. One reflects the range of
variation in the spectral measurements and the other the
initiation time for the peak of growth. Using the
estimates that are obtained through spectral analysis of a
sequence of composite imagery, seasonal periodicity can
be incorporated into multi-temporal classification. The
resulting classification based on these components

reflects different sources of temporal variation.
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In this study, the NDVI images were computed for
NOAA AVHRR imagery over the Korean Peninsula for
1996 and 2000, and the harmonic components from this
five-year sequence were estimated via spectral analysis.
Land-cover types were then classified using the
multistage classification algorithm that makes use of
hierarchical clustering (Lee, 2001). Section I describes
a harmonic model for multi-temporal data. The
classification algorithm is briefly reviewed in Sections
II. Section IV contains the results of the spectral
analysis and classification. Conclusions are presented in

Section V.

2. Harmonic Model

Many physical processes that have been sensed and
displayed in the image from the land exhibit temporal
variation with seasonal periodicity. The process of
seasonality can be represented with a harmonic model
shoes components are assumed to be only due to target
characteristics. Thus, the temporal sequence of each
pixel has a harmonic model according to the seasonal
profile of its class.

A sample image is considered as a set of n pixels and
the intensity process can be represented in the form

X= o) +& M

€)= {6 = Cletiy + Repsin(@eiyt + Ocii), | € 1)
where I, = {1, 2,--+, n} is a set of pixel indices, ¢ = {c(1),
i€l,} is an integer valued random vector related to a
particular configuration of classes, L, is a mapping
vector of ¢ into real values at time, and & is a noise
random vector at time #. The constant mean level, ¢/,
frequency @y, amplitude R and phase G, are the
harmonic components associated with class c(i) of the
ith pixel. In the process of Eq. (1), class ¢(i) can be
characterized using {Q), W)y Ry O} This set of
the parameters contains temporal information that

naturally combines multiple sequential data sets. The

seasonal profile model can be fit to multi-temporal
samples of NDVI measurements provided that data
acquisitions are available to estimate the parameters in
the model of Eq. (1).

The parameters of the harmonic model are derived
from the temporal trajectory of each pixel s intensity.
Without loss of generality, the noise is assumed to be
identically distributed with Gaussian density over a
given period. If the frequencies are known, the
approximate least-squares estimates of the unknown
parameters can be easily calculated for a given
observation series. The least squares estimates are
equivalent to the maximum likelihood values under the
Gaussian assumption. Restating the sinusoid form of Eq.
(1) for each pixel individually the model of the ith pixel
becomes

Uy =0 + Rsin(wit + 8)) = a; + Acos(wit + 6y)
+ Bisin(wyt + 0)).

@

Given a realization sequence of the ith pixel for T
time steps, {x;, £ = 1,-++, T} the estimates of A and B in
Egq. (2) are approximated for a specified frequency by
(Bloomfield, 1976)

E=%;%=%
Aj= ﬁ{ ;zt,,cosa),-tz’: sin?@;t

- Z!:z,,isina),-t zr: cosa),-tsina);t} 3
Bi= ﬁ[ ; Z, sinwyt ; cos%w;t

- Z 7, oSyt Z cosw;t sina),-t]
t t
where

2
A= )y cosZwit ) sine;t - ( x cosa)itsina),-t)
t t t
2= Xei— X;,
The amplitude is easily estimated from Eq. (3):
Ri=VA}+B}. @

The phase component is basically obtained by solving
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tanf = %

However, the tangential inversion gives the same value

for the different combinations of signs of A and B, for

example, (A >0, B> 0) and (A <0, B <0). The solution
is as follows:

70) A

ifB;=0,0,=| -n/2 A;

arbitrary A

R Q)
otherwise, 8 ; = tan_l(A i/ gl_) +k

0 forB;>0
7 forB;<0,A;>0
- for B;<0,4;<0

where k =

A discrete set of possible oscillation frequencies can be
presumed in many applications for phonological
variability of vegetation. A most likely frequency with

the maximum magnitude of the periodogram
I o< R;

can be selected by examining the spectrum at each
frequency.

The simple harmonic model of Eq. (1) may not
represent the complicated temporal characteristics of the
physical processes that have been sensed and displayed
in the sequential imagery sufficiently. A general
harmonic model with multiple frequencies is more
appropriate for temporal processes. However,
computation requirements make it desirable to utilize
the lowest order model that adequately captures the
seasonal variation for the purpose of discrimination in
remote sensing. For land vegetation that is considered in
this study, the temporal variation of the process is
strongly correlated to annual seasonal cycle, which
justifies the use of a simple frequency mode. Using the
estimates of the harmonic components, the classification
is based on multi-temporal features over the observed

area.

3. Multistage Hierarchical Clustering
Classification

In image classification techniques, it is necessary to
consider an essential structural characteristic that the
scene has hierarchy of information (Tanimoto and
Klinger, 1990). In the hierarchical structure, more than
one sub-regions in the lower levels can be merged into
large homogeneous regions in the higher levels and this
process is repeated at successively higher levels. Under
the constraint of the hierarchical structure, it is possible
to determine natural image segments by combining
hierarchical clustering. A multi-stage hierarchical
clustering technique was developed for more efficient
unsupervised approach of image classification by the
author (Lee, 2001). The multi-stage algorithm consists
of two stages. The “local” segmentor of the first stage
performs region-growing segmentation by employing a
hierarchical clustering procedure with the restriction that
pixels in a cluster must be spatially contiguous. The
“global” segmentor of the second stage, which has not
spatial constraints for merging, carries out hierarchical
clustering for the segments resulting from the previous
stage. The local segmentation can be considered as a
relaxation stage to reduce the obscurity in the image
pattern, whereas the global segmentation is a
classification stage in which the image is grouped into a
number of physically meaningful regions.

Hierarchical clustering is one of the most appropriate
approaches for unsupervised analysis, which step-by-
step merges small clusters into larger ones using
similarity (or dissimilarity) coefficient (Anderberg,
1973). Suppose that the image is partitioned in m
regions in h level of the multistage hierarchical
clustering. Let J,, = {1, 2,---, m} be a set of region
indices associated with a partition and G* = (G}, j €
Jyn} be a partition at the hth step where G/ is a set of the
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pixels pertaining to region j. For convenience, the index
h is omitted and the variable or sets related to the merge
of G, and G; are indexed by u. That is,

G UG=Gy, s € Jy,

G, means a partition state where G, and G; in G are
replaced by G,,.

Let Z = {Z; i €1,} and Z; be a feature vector that
represents the ith pixel. The similarity coefficient is then

obtained in the following:
hu=0Z16) - 021G ©)
where P(Z |G)ocexp{-A/Z | G)} and P(G,|Z,G)

ocexp(4,). Therefore, the clustering approach using the
similarity coefficient of Eq. (6), A, yields the clustering
state with the maximum likelihood condition among all
the possible regional configurations at every level. The
A, term can be generally represented by a function of
the difference between the mean value and the observed
value of the feature vector. Since the parameters
associated with the clustering are to be updated
according to the new configuration by merging at each
iteration, they are to be locally estimated corresponding
to only the region merged in a given iteration. A

weighted quadratic distance measure can be used for A,
Mele= T Diz-gIWizi-gl ()

where
_Llyg
K= njieG,-Z’
and W; and n; are a weight matrix and the number of

pixels of region j respectively. Then,

fu= L L= Y WiZi- )+ 2 12 I WilZi- ]

®
- X (Zi- I WilZi- po.

The computational complexity of the algorithm
requires that the coefficients be computed by locally
updating them according to the tentative configuration at

each iteration. Utilizing Eq. (8) satisfies the requirement

of local updating for the similarity coefficient in the
hierarchical clustering process. In general, the weight
matrix of Eq. (7) is selected to normalize the elements of
the feature vector such that they have a same scale. If the
weight matrix is independent on the region (ie. W = W;
for V;& J,,), the similarity coefficient of Eq. (8) is
simplified as

A= LW + gl WL — m L, Wi, )]

4. Applications

The NOAA AVHRR image data analyzed in this
study were acquired over the area of 600 x 1000km?
including the Korean Peninsula on a daily basis during
1996~2000. Although the AVHRR provides daily
repeat views, many images were contaminated by
clouds. The problem of cloud occurrence may be
avoided to some extent through the use of “static” image
compositing, a procedure in which geographically
registered data sets that are collected over a sequential
period time are compared, and the “best” observation is
selected to represent the conditions observed during that
time period. Conventional temporal compositing
schemes based on the maximum of NDVI are designed
to minimize atmospheric optical depth through near-
nadir, clearest pixel selection (Holben, 1986). This
simple method, that can be easily automated, may be
quite effective in reducing cloud contamination given a
sufficiently long composite period. Unfortunately it is
difficult to maintain reasonable temporal resolution and
also completely produce cloud-free surface
measurements. Using a long composite period will mask
the subtle surface changes between the scenes. Also, for
any given time-composite period, there is no assurance
that cloud-free observations are recorded. This study
utilizes a combination of the traditional static
compositing based on the maximum of NDVI within

short interval and the “dynamic” compositing based on

-385-



Korean Journal of Remote Sensing, Vol.19, No.5, 2003

~an adaptive polynomial filter (Lee and Crawford, 1991;
Lee, 2002). The dynamic technique utilizes temporal
information to enhance the imagery. It smoothes the
spectral measurements that are deteriorated by
atmospheric changes through time, as well as residual
effects of sensor viewing and solar zenith angles,
thereby resulting in better estimation for seasonal
components.

First, the 238 images of statically composited NDVI
data were generated from the LAC data set, which has
the highest resolution available from the AVHRR with
approximately 1km? spatial resolution, by selecting the
maximum values of each pixel in every 7-day period.
The problem of cloud cover was reduced somewhat by
the compositing, but many composite images still had
bad measurements over an extensive area. In order to
produce cloud-free observations over the whole period,
the dynamic technique was applied to the composite
sequence (Lee, 2002). It recovered missing
measurements and increased the discrimination
capability for imagery that was spatially modified by
imperfect sensing, thin clouds and atmospheric
attenuation. In the following analysis, the composited
imagery is referred to as the observed data. This study
masked the water area, which is not of interest, for the
analysis and the area of land actually analyzed
corresponds to 263241 pixels in the 600 X 1000 image.

Spectral analysis for the five year period was
conducted using the observed series. The set of
frequencies, {@ = 27k/5, k=1, 2,---, 60}, was examined
for all the pixels individually. Only in 381 pixels of the
land area, the estimated periodogram was maximized at
the frequencies other than @ = 27 (k = 5) that
corresponds to one year cycle. Since the 381 pixels are
sporadically distributed, the results of these points can
be considered as calculation or observation errors. It is
clear that the vegetation processes of interest are
dependent on the seasonality of the region. Thus, this
study used a uniform cycle of one year for the harmonic

models of the whole area analyzed, which has four
seasons. The constant mean level, amplitude and phase
indices were estimated for this period using Egs. (3), (4)
and (5). Figs. 1, 2 and 3 shows the images of the
estimated values of the harmonic components. The
multi-temporal images of estimated NDVI for each
component first were classified separately using the
multistage algorithm.

The algorithm can use the values of the mean and
amplitude indices directly for the similarity coefficient
of Eq. (8), but the phase index must be transformed to an
appropriate measure for the algorithm based on the
difference of the values that represent the class. The
phase index is a radian value with the range of 7 and 7.
The sine curve in the harmonic model of (1) is
coincident at the two extreme values of phase, and the
difference in this characteristic between classes is then
not measured properly by the absolute difference of two
phase indices. For example, the class with 8 = 577/6 has
more similar feature with the class with 8 = -577/6 than
the class with 8 = 0. A transformation was employed to
overcome this problem, where the phase index is

projected on the vector space of two dimensions:
0= [sm&]

cosd (10)
For the trigonometric component of Eq. (10), the value
of one point in a quadrant is same as the value of another

point that is located in one of the other quadrants, that is,
sind = sin(7 - 6) and cosd = cos(-4),
whereas the values of two components are not same
simultaneously at the same point. The distance measure
based on this vector can properly quantify the difference
in the phase index of class. However, if the merging in
the clustering algorithm generates a new value of v(6)
by combining two vectors of the merged sub-regions,
the estimation may result in different values of phase
index for each component. The merging algorithm must
operate so that the estimate of the phase index after

joining two groups is same in the two components. For
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Fig. 1. Image of estimated values (left) and classification image map (right) of mean index.

Fig. 2. Image of estimated values (left) and classification image map (right) of amplitude index.
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Fig. 3. Image of estimated values (left) and classification image map (right) of phase index.

this, the mean vector of Z = v(0) in Eq. (7) was

estimated as follows:

[sinéj

f=| =

cosf;

where

= 1 - ] sin — 08 in_ 1 Z .

;= 5 (sin”1§;" + cos15;™), §;" = — 4 sind; and
l’lleG/

2
S;OS = 1 > cosf;.

njieg;
Using identity matrix for the weight matrix, the similarity
coefficient of the clustering for phase index is then

A= nr.dnur + ns/[sﬂs - nu.l[uﬂu ‘Z(I[rsr + 1S - ,l[,S;) (11)

where ]
St

Sjé:os} and Su = Sr+ S_v.

Sj=

The classification results of each component are shown
in Figs. 1, 2 and 3, and Tables 1. The algorithm
generated 5, 5 and 4 classes for the mean, amplitude and
phase indices respectively. In the classification image

maps of Figs. 1 and 2 for the mean and amplitude
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Table. 1. Estimated Values of Harmonic Components from

Classification with Single Harmonic Component.

Class Mean Number of Pixels

A 0.2493 24270

B 0.2100 86832

C 0.1880 67159

D 0.1584 63861

E 0.1178 21121
Class Amplitude Number of Pixels

A 0.2147 24702

B 0.1897 80131

C 0.1631 57204

D 0.1385 58706

E 0.1011 42680
Class Phase Number of Pixels

A 0.750m 46253

B 0.8137 21799

C 0.8587 101407

D 0.8397 93784
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indices, the class with the higher class-average of each
component is darker. As shown in Fig. 1, the annual-
average values of NDVI are higher in the mountain
region and the southern area of Korean Peninsula. Fig. 2
shows that the northern mountain area of the peninsula
exhibits great seasonal variation in vegetation processes,
but difference between the seasons is relatively small in
the southern area. Fig. 3 displays the classification map
of the phase index, in which the brighter shade
represents the higher class-average, using Eq. (11). It
shows that the highest peak of the yearly NDVI process
generally comes earlier in the eastern area. Given the
estimated phase index, é, the highest point, ,, can be

obtained with monthly unit in a year:

T g ifo<t
.12 ; 2 2
Ip= gxhiﬁ X E where gsh,ﬁ = 3T
5 -8, otherwise

Next, the land cover of the Korean Peninsula was
classified using the feature vector, which composes of
three harmonic components estimated from the five year
series of NDVI imagery. For this analysis, A and B in
Eq. (2) were used instead of the amplitude and phase
indices previously used because it is difficult to
normalize the phase index in a same scale with the other
components. Thus, the feature vector and the weight

matrix for the distance measure of Eq. (7) are as follows:

1

5 e ° 0

. 1
Zi= |A; and W = 0 =

B 1

0 5@)
where
Z (@i~ )@~ 1)
62 ==

n

is the estimated variance of z and the estimated mean
intensity vector, /i, was calculated with the average of

the nine values of the center and eight nearest neighbor

pixels in this study. The classification map is displayed
in Fig. 4, and Table 2 and Fig. 5 contain the estimated
harmonic function of observed NDVI for each class. As
shown in Fig. 4, the land cover on the peninsula was
classified with 5 classes. This classification is by and
large summarized with northern vegetation area (Aal,
Aa2), southern vegetation area (Abl, Ab2) and low
vegetation area (B). Fig. 5 demonstrates that the level of
NDVI is similar both in the north and south of the
peninsula at the growing season, but it is much different
at the low season. Classes Aal and Ab2 are closest in
the estimated mean level, although the harmonic

patterns of two classes are much different, as shown in

Table. 2. Estimated Values of Harmonic Components from
Classification with Three Harmonic Components.

Class | Mean | Amplitude | Phase | Number of Pixels
Aal |0.1981} 0.1939 (08757 103637
Aa2 |0.1701| 0.1580 |0.8497 42593
Abl |02498 | 0.1375 |0.8827 23647

Ab2 (02108 0.1368 |0.8627 41671

B 01364 | 0.1253 |0.787% 51695

Table 2 and Fig. 5. It implies that the two classes are
very possibly assigned in a same class, if the
classification is performed with the similarity coefficient

based only on the original values of NDVI observation.

5. Conclutions

Various multi-temporal techniques for analyzing
remotely-sensed images have been developed, but
conventional approaches for multi-temporal
classification have usually used image data with low
temporal resolution for a limited time period. An
approach based on the harmonic model may be the most
plausible temporal technique to analyze a sequence of
the images that are acquired regularly at short time

intervals for processes that exhibit seasonal trends such
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Fig. 4. Classification image map using harmonic components.

as vegetation activity. However, spectral analysis is
complicated when frequencies are unknown, thereby
making this approach unsuitable for analyzing multi-
temporal process observed in remote sensing data,
where enormous amounts of data are usually examined.
Fortunately, most of vegetation processes assume one
year cyclic behavior. Many studies have shown that the

major agent of variability in NDVI data is inter-seasonal

phonological variability. The results of this study are
consistent with this observation. For the NDVI
processes, three temporal indices have been formulated
from the harmonic model using the predetermined
frequency. The mean index of the harmonic model
represents the overall mean level of vegetation activity
measured by NDVI, the amplitude and phase indices

characterize the shape of the seasonal spectral profile.
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0.35]

0.20

NDVI

0.051

1 3 5 7 9 11
Month

Fig. 5. Estimated harmonic functions for 5 classes.

These indices offer an alternative approach to the
conventional techniques to discriminate between land-
cover types based on the spectral signatures at a single
or several points in time. To the extent that different
vegetations have different development cycles, each
type has a unique temporal profile. Thus, the
classification reflects different sources of temporal
variation by using the estimates that are obtained from

sequential images through spectral analysis.
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