• Title/Summary/Keyword: Multi-layer materials

Search Result 501, Processing Time 0.022 seconds

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.

A Study on Mechanical Properties of Strand/Particle Composites(I) - Effect of Layer Constructions - (스트랜드/파티클 복합체의 기계적 성질에 관한 연구(I) - 단면구성이 기초물성에 미치는 영향 -)

  • Kim, Yu-Jung;Shibusawa, Tatsuya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • To develop the technology of producing structural board from low grade materials, an attempt was made to produce strand/particle composites from split wood strand(S) and particle(P) of (Cryptomeria japonica D. Don), which changed the layer construction and the ratio of S/P. The influence of layer construction on board properties was determined, focusing on the number and alignment of the S layers. The effect of weight ratio of S/P (3:7, 1:1, 7:3) on mechanical properties was also discussed on seven layered panel. Mechanical properties were determined from static bending tests to give parallel and perpendicular modulus of rupture (MOR) and modulus of elasticity (MOE), and the internal bond (IB) strength. In general, the surface strand layers contributed to the MOR and MOE. The parallel MOR and MOE values were the largest for the single layered S panel (only Slayers: S1), but the perpendicular MOR and MOE was the smallest. Perpendicular MOR and MOE were the largest for seven layered composite that had two cross oriented strand layers (SPSPSPS: SP7). Specimens retained more than half of their MOE and MOR after two hours in boiling water and one hour soaking. IB was the largest for the panel having only P layers, however, differences in IB strength were not identified among the other multi-layered composite panels thus the effect of layer construction on IB strength was small. Thickness swelling (TS) and surface roughness were smaller for the composite having P layers on the surface than for those having S layers. The addition of strands did not enhance the mechanical properties (MOR, MOE, IB). TS values for the panels, with which the S/P ratio was over than 1:1, was the similar to the value for the single layered S panels.

  • PDF

THE EFFECT OF SMEAR LAYER REMOVAL AND POSITION OF DENTIN ON SHEAR BOND PROPERTIES OF DENTIN BONDING SYSTEMS TO INTERNAL CERVICAL DENTIN (도말층 제거와 상아질의 부위가 치수강 내부 상아질에 대한 수종 상아질 결합제의 전단결합성질에 미치는 영향)

  • Lim, Yoen-Ah;You, Young-Dae;Lee, Yong-Keun;Lee, Su-Jong;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.3
    • /
    • pp.465-472
    • /
    • 1999
  • The aim of this study was to determine the shear bond properties of four dentin bonding systems to internal cervical dentin, and to investigate the effect of the pretreatment for removing smear layer and position of dentin on shear bond strength of dentin bonding agents. The materials tested in this study were consisted of four commercially available dentin bonding systems[Allbond 2(AB), Clearfil Linerbond 2(CL), Optibond FL(OP), Scotchbond Multi-purpose(SB)], a restorative light-cured composite resin[Z100]J and a chelating agent[RC-prep(RC)]. Fifty-six freshly extracted human molars were used in this study. Dentin specimens were prepared by first cutting the root of the tooth 1mm below the cementoenamel junction with a diamond bur in a high speed handpiece under air-water coolant, and then removing occlusal part at pulp horn level by means of a second parallel section, The root canal areas were exposed by means of cutting the dent in specimens perpendicular to the root axis. Dentin specimens were randomly assigned to two groups(pretreated group, not-pretreated group) based on the pretreatment method of dentin surface. In pretreated group, RC was applied to dentin surface for 1minute and then rinsed with NaOCl. In not-pretreated group, dentin surface was rinsed with saline Each groups were subdevided into four groups according to dentin bonding systems. Four dentin bonding systems and a restorative resin were applied according to the directions of manufacturer. The dentin-resin specimens were embedded in a cold cure acrylic resin, and were cut with a low speed diamond saw to the dimension of $1{\times}1mm$. The cut specimens were divided into three groups according to the position of internal cervical dentin. The shear bond properties of dentin-resin specimens were measured with Universal testing machine (Zwick, 020, Germany) with the cross head speed of 0.5mm/min. From this experiment. the following results were obtained : 1. In case of shear bond strength, there was no significant difference among dentin bonding systems in not-pretreated groups, whereas in pretreated groups, the shear bond strengths of AB and of SB were statistically significantly higher than those of CL and of OP. 2. The shear bond strengths of AB and of SB in pretreated groups were significantly higher than those in not-pretreated groups. 3. The shear bond strengths of radicular layer of OP were higher than those of occlusal layer of OP in not-pretreated groups, and of AB in pretreated groups. The shear bond strengths of radicular layer of AB and of CL in not-pretreated groups were higher than those in pretreated group.

  • PDF

Studies on the Optical and the Electrical Characterization of Organic Electroluminescence Devices of Europium Complex Fabricated with PVD(Physical Vopor Deposition) Technique (진공 증착법에 의하여 제작한 Europium complex 유기 박막 전기발광소자의 광학적.전기적 특성에 관한 연구.)

  • Lee, Myeong-Ho;Lee, Han-Seong;Kim, Yeong-Gwan;Kim, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.285-295
    • /
    • 1999
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays. They are attractive because of their capability of multi-color emission, and low operation voltage. An approach to realize such device characteristics is to use active layers of lanthanide complexes with their inherent extremely sharp emission bands in stead of commonly known organic dyes. In general, organic molecular compounds show emission due to their $\pi$-$\pi*$ transitions resulting in luminescence bandwidths of about 80 to 100nm. Spin statistic estimations lead to an internal quantum efficiency of dye-based EL devices limited to 25%. On the contrary, the fluorescence of lanthanide complexes is based on an intramolecular energy transfer from the triplet of the organic ligand to the 4f energy states of the ion. Therefore, theoretical internal quantum efficiency is principally not limited. In this study, Powders of TPD, $Eu(TTA)_3(phen) and AlQ_3$ in a boat were subsequently heated to their sublimation temperatures to obtain the growth rates of 0.2~0.3nm/s. Organic electrolumnescent devices(OELD) with a structure of $glass substrate/ITO/Eu(TTA)_3(phen)/AI, glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AI and glass substrate/ITO/TPD/Eu(TTA)_3(phen)/AIQ_3AI$ structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, $Eu(TTA)_3(phen)$ as an emitting material, and Tris(8-hydroxyquinoline)Aluminum$(AlQ_3)$ as an electron transporting layer. Electroluminescent(EL) and current density-voltage(J-V) characteristics of these OELDs with various thickness of $Eu(TTA)_3(phen)$ layer were investigated. The triple-layer structure devices show the red EL spectrum at the wavelength of 613nm, which is almost the same as the photoluminescent(PL) spectrum of $Eu(TTA)_3(phen)$.It was found from the J-V characteristics of these devices that the current density is not dependent on the applied field, but on the electric field.

  • PDF

Atomic Layer Deposition Method for Polymeric Optical Waveguide Fabrication (원자층 증착 방법을 이용한 폴리머 광도파로 제작)

  • Eun-Su Lee;Kwon-Wook Chun;Jinung Jin;Ye-Jun Jung;Min-Cheol Oh
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.175-183
    • /
    • 2024
  • Research into optical signal processing using photonic integrated circuits (PICs) has been actively pursued in various fields, including optical communication, optical sensors, and quantum optics. Among the materials used in PIC fabrication, polymers have attracted significant interest due to their unique characteristics. To fabricate polymer-based PICs, establishing an accurate manufacturing process for the cross-sectional structure of an optical waveguide is crucial. For stable device performance and high yield in mass production, a process with high reproducibility and a wide tolerance for variation is necessary. This study proposes an efficient method for fabricating polymer optical-waveguide devices by introducing the atomic layer deposition (ALD) process. Compared to conventional photoresist or metal-film deposition methods, the ALD process enables more precise fabrication of the optical waveguide's core structure. Polyimide optical waveguides with a core size of 1.8 × 1.6 ㎛2 are fabricated using the ALD process, and their propagation losses are measured. Additionally, a multimode interference (MMI) optical-waveguide power-splitter device is fabricated and characterized. Throughout the fabrication, no cracking issues are observed in the etching-mask layer, the vertical profiles of the waveguide patterns are excellent, and the propagation loss is below 1.5 dB/cm. These results confirm that the ALD process is a suitable method for the mass production of high-quality polymer photonic devices.

Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots (다층 성장한 InAs/InAlGaAs 양자점의 광학적 특성)

  • Oh, Jae-Won;Kwon, Se-Ra;Ryu, Mee-Yi;Jo, Byoung-Gu;Kim, Jin-Soo
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.442-448
    • /
    • 2011
  • Self-assembled InAs/InAlGaAs quantum dots (QDs) grown on an InP (001) substrate have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The single layer (QD1) and seven stacks (QD2) of InAs/InAlGaAs QDs grown by the conventional S-K growth mode were used. The PL peak at 10 K was 1,320 nm for both QD1 and QD2. As the temperature increases from 10 to 300 K, the PL peaks for QD1 and QD2 were red-shifted in the amount of 178 and 264 nm, respectively. For QD1, the PL decay increased with increasing emission wavelength from 1,216 to 1,320 nm, reaching a maximum decay time of 1.49 ns at 1,320 nm, and then decreased as the emission wavelength was increased further. However, the PL decay time for QD2 decreased continuously from 1.83 to 1.22 ns as the emission wavelength was increased from 1,130 to 1,600 nm, respectively. These PL and TRPL results for QD2 can be explained by the large variation in the QD size with stacking number caused by the phase separation of InAlGaAs.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Water-Assisted Synthesis of Carbon Nanotubes at Low Temperature and Low Pressure (물을 첨가한 탄소나노튜브의 저온 저압 합성)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.395-395
    • /
    • 2008
  • Water-assisted synthesis of carbon nanotubes (CNTs) has been intensively studied in recent years, reporting that water vapor enhances the activity and lifetime of metal catalyst for the CNT growth. While most of these studies has been focused on the supergrowth of CNTs at high temperature, rarely has the similar approach been made for the CNT synthesis at low temperature. Since the metal catalyst are much less active at lower temperature, we expect that the addition of water vapor may increase the activity of catalyst more largely at lower temperature. We synthesized multi-walled CNTs at temperature as low as $360^{\circ}C$ by introducing water vapor during growth. The water addition caused CNTs to grow ~3 times faster. Moreover, the water-assisted growth prolonged the termination of CNT growth, implying the enhancement of catalyst lifetime. In general, a thinner catalyst layer is likely to produce smaller-diameter, longer CNTs. In a similar manner, the water vapor had a greater effect on the growth of CNTs for a smaller thickness of catalyst in this study. To figure out the role of process gases, CNTs were grown in the first stage and then exposed to each of process gases in the second stage. It was shown that water vapor and hydrogen did not etch CNTs while acetylene led to the additional growth of CNTs even faster in the second stage. As-grown CNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy.

  • PDF

Characteristics of Plated Bump on Multi-layer Build up PCB by Pulse-reverse Electroplating (Pulse-reverse도금을 이용한 다층 PCB 빌드업 기판용 범프 생성특성)

  • Seo, Min-Hye;Kong, Man-Sik;Hong, Hyun-Seon;Sun, Jee-Wan;Kong, Ki-Oh;Kang, Kae-Myung
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.151-155
    • /
    • 2009
  • Micro-scale copper bumps for build-up PCB were electroplated using a pulse-reverse method. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance. The electroplated micro-bumps were characterized using various analytical tools, including an optical microscope, a scanning electron microscope and an atomic force microscope. Surface analysis results showed that the electroplating uniformity was viable in a current density range of 1.4-3.0 A/$dm^2$ at a pulse-reverse ratio of 1. To investigate the brightener concentration on the electroplating properties, the current density value was fixed at 3.0 A/$dm^2$ as a dense microstructure was achieved at this current density. The brightener concentration was varied from 0.05 to 0.3 ml/L to study the effect of the concentration. The optimum concentration for micro-bump electroplating was found to be 0.05 ml/L based on the examination of the electroplating properties of the bump shape, roughness and grain size.

Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells (고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극)

  • Kim, Ji-Soo;Sim, Eun-Ju;Dao, Van-Duong;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.262-267
    • /
    • 2016
  • In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohybrid materials are applied to counter electrode (CE) of dye-sensitized solar cells (DSCs). The electrochemical properties of CEs are examined through cyclic voltammogram, electrochemical impedance spectroscopy, and Tafel measurements. As a result, both electrochemical catalytic activity and electrical conductivity are highest for PtAu/MWNT electrode. The DSC employing PtAu/MWNT CE exhibits power conversion efficiency of 7.9%. The efficiency is better than those of devices with MWNT (2.6%), AuNP/MWNT (2.7%) and PtNP/MWNT (7.5%) CEs.