• Title/Summary/Keyword: Multi-functionality

Search Result 234, Processing Time 0.028 seconds

Laser Drilling System for Fabrication of Micro via Hole of PCB (인쇄회로기판의 미세 신호 연결 홀 형성을 위한 레이저 드릴링 시스템)

  • Cho, Kwang-Woo;Park, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.14-22
    • /
    • 2010
  • The most costly and time-consuming process in the fabrication of today's multi-layer circuit board is drilling interconnection holes between adjacent layers and via holes within a layer. Decreasing size of via holes being demanded and growing number of via holes per panel increase drilling costs. Component density and electronic functionality of today's multi-layer circuit boards can be improved with the introduction of cost-effective, variable depth laser drilled blind micro via holes, and interconnection holes. Laser technology is being quickly adopted into the circuit board industry but can be accelerated with the introduction of a true production laser drilling system. In order to get optimized condition for drilling to FPCB (Flexible Printed Circuit Board), we use various drill pattern as drill step. For productivity, we investigate drill path optimization method. And for the precise drilling the thermal drift of scanner and temperature change of scan system are tested.

Cluster Robots Line formatted Navigation Based on Virtual Hill and Virtual Sink (Virtual Hill 및 Sink 개념 기반의 군집 로봇의 직선 대형 주행 기법)

  • Kang, Yo-Hwan;Lee, Min-Cheol;Kim, Chi-Yen;Yoon, Sung-Min;Noh, Chi-Bum
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.237-246
    • /
    • 2011
  • Robots have been used in many fields due to its performance improvement and variety of its functionality, to the extent which robots can replace human tasks. Individual feature and better performance of robots are expected and required to be created. As their performances and functions have increased, systems have gotten more complicated. Multi mobile robots can perform complex tasks with simple robot system and algorithm. But multi mobile robots face much more complex driving problem than singular driving. To solve the problem, in this study, driving algorithm based on the energy method is applied to the individual robot in a group. This makes a cluster be in a formation automatically and suggests a cluster the automatic driving method so that they stably arrive at the target. The energy method mentioned above is applying attractive force and repulsive force to a special target, other robots or obstacles. This creates the potential energy, and the robot is controlled to drive in the direction of decreasing energy, which basically satisfies lyapunov function. Through this method, a cluster robot is able to create a formation and stably arrives at its target.

A New Method to Fabricate Bulk PCMs from Continuous Wires and the Mechanical Behaviors (연속된 와이어를 이용한 다층 PCM의 제조방법 및 특성 평가)

  • Lee, Yong-Hyun;Choi, Ji-Eun;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.245-252
    • /
    • 2007
  • Since the new millennium, truss PCMs(Periodic Cellular Metals) have drawn attention because of their superior specific stiffness, strength and multi-functionality. Prior studies have focused on the structural design and optimization. Kagome truss PCM has been proved to have the higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. In this study, we introduce a new idea to fabricate multi-layered Kagome truss PCM from continuous wires which can gain high strength as in piano wires and can be controlled to be defect free owing to drawing process. The relative density, the stiffness and the strength under bending and compressive load are estimated through elementary mechanics and compared with the results from experiments and FEA. The failure mechanisms are analyzed, and also mechanical performance and production are discussed.

A Study on MMC System Furniture Design to use small living spaces effectively (소규모 주거공간의 효율적 활용을 위한 MMC System Furniture Design 연구)

  • Bae, Jee-Hoon;Yoon, Jong-Young
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.237-240
    • /
    • 2005
  • Nowadays living space has been small-sized due to a rise in the standard of living, change of recognition on the increase of housing for the singles, and frequent movements of duty place, etc. and the furnitures naturally evolved assembly and multi-functionality. However, it retuned with an economic charge in the consumers and lost the uniformity in a small-sized living space as well since the furniture depended on the each miscellaneous household goods or products and came to be used. Hereupon it was demanded the system where the various furnitures are to fit to here. This study aimed at this point firstly examined a new environment change which it follows till a small living space is demanded through lots of literature, after understanding the concept of the system furniture, I classified expressive types of system furniture in modern environment and analyzed the design quality and characteristics in it by selecting well-known furniture magazines inside and outside of the country and extracting and analyzing system furniture images which are recorded in advertisements or articles. The objective of this study is to present MMC(Multi Modular Coordination, a system furniture design based on this analysis that inquiring the problems with function, structure, assembly which other existing system furnitures are facing enabled to apply a basic data in unit-module planning and by sampling embodiment modeling by uses.

  • PDF

A Study on Dyeing of Wool Fabrics Treated with Coffee Sludge and Onion Shells Extract by Different Dyeing Method (염색방법 차이에 따른 커피 슬러지와 양파 외피 추출물을 이용한 양모섬유의 염색성에 관한 연구)

  • Sim, Hyunju;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • Coffee sludge and onion shells are known typically as waste resources as well as simultaneously being the raw material for dye having a golden brown color. This research studies the dyeability, functionality, and colors of woolen fabric after being dyed by different dyeing method using coffee sludge and onion shells extract. The woolen fabric was refined and pre-mordanted with tannin. The dyeing process conducted was single-dye, using coffee sludge and onion shells extract, sequential multi-dye, consecutively dyeing with coffee sludge and onion shells, and mixed-dye, blending coffee sludge extract and onion shells extract to dye. The dyeing was measured on the surface color, color fastness, and UV-protection ability. As a result, the expression of various hues of tan using coffee sludge and onion shells extract were shown to be possible. Additionally, single-dye, sequential multi-dye, mixed-dye had generally superiority in color fastness to light, all rating 3 and color fastness to washing, rating 3 or 4, showing relatively stable color fastness to washing. The UV protection ability was shown to be better, especially appearing satisfactory in the UV-B protection, all measured to be over 90%.

Object Dimension Estimation for Remote Visual Inspection in Borescope Systems

  • Kim, Hyun-Sik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4160-4173
    • /
    • 2019
  • Borescopes facilitate the inspection of areas inside machines and systems that are not directly accessible for visual inspection. They offer real-time, up-close access to confined and hard-to-access spaces without having to dismantle or destructure the object under inspection. Borescopes are ideal instruments for routine maintenance, quality inspection and monitoring of systems and structures. The main application being fault or defect detection, it is useful to have measuring capability to quantify object dimensions in a target area. High-end borescopes use multi-optic solutions to provide measurement information of viewed objects. Multi-optic solutions can provide accurate measurements at the expense of structural complexity and cost increase. Measuring functionality is often unavailable in low-end, single camera borescopes. In this paper, a single camera measurement solution that enables the size estimation of viewed objects is proposed. The proposed solution computes and overlays a scaled grid of known spacing value over the screen view, enabling the human inspector to estimate the size of the objects in view. The proposed method provides a simple means of measurement that is applicable to low-end borescopes with no built-in measurement capability.

Bending and buckling of porous multidirectional functionality graded sandwich plate

  • Lazreg, Hadji;Fabrice, Bernard;Royal, Madan;Ali, Alnujaie;Mofareh Hassan, Ghazwani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • Bending and buckling analysis of multi-directional porous functionally graded sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. The principle of virtual displacements was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The validation of the present study has been performed with those available in the literature. The composition of metal-ceramic-based FGM changes in longitudinal and transverse directions according to the power law. Different porosity laws, such as uniform distribution, unevenly and logarithmically uneven distributions were used to mimic the imperfections in the functionally graded material that were introduced during the fabrication process. Several sandwich plates schemes were studied based on the plate's symmetry and the thickness of each layer. The effects of grading parameters and porosity laws on the bending and buckling of sandwich plates were examined.

Implementation of MAPF-based Fleet Management System (다중에이전트 경로탐색(MAPF) 기반의 실내배송로봇 군집제어 구현)

  • Shin, Dongcheol;Moon, Hyeongil;Kang, Sungkyu;Lee, Seungwon;Yang, Hyunseok;Park, Chanwook;Nam, Moonsik;Jung, Kilsu;Kim, Youngjae
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.407-416
    • /
    • 2022
  • Multiple AMRs have been proved to be effective in improving warehouse productivity by eliminating workers' wasteful walking time. Although Multi-agent Path Finding (MAPF)-based solution is an optimal approach for this task, its deployment in practice is challenging mainly due to its imperfect plan-execution capabilities and insufficient computing resources for high-density environments. In this paper, we present a MAPF-based fleet management system architecture that robustly manages multiple robots by re-computing their paths whenever it is necessary. To achieve this, we defined four events that trigger our MAPF solver framework to generate new paths. These paths are then delivered to each AMR through ROS2 message topic. We also optimized a graph structure that effectively captures spatial information of the warehouse. By using this graph structure we can reduce computational burden while keeping its rescheduling functionality. With proposed MAPF-based fleet management system, we can control AMRs without collision or deadlock. We applied our fleet management system to the real logistics warehouse with 10 AMRs and observed that it works without a problem. We also present the usage statistic of adopting AMRs with proposed fleet management system to the warehouse. We show that it is useful over 25% of daily working time.

SoC Design of Self-Diagnosing Speaker Connection System (자동 고장진단이 가능한 스피커 연결 시스템의 SoC 설계)

  • Song, Moon-Vin;Kwon, Oh-Kyun;Song, The-Hoon;Chung, Yun-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.269-275
    • /
    • 2007
  • Pervasive Multi-channel audio systems are being realized due to advances in digital technology. This paper proposes an efficient system that serially connects individual speakers with bidirectional digital communication capability by means of SoC design. In particular, each speaker can identify the bit stream assigned to the speaker and convert it into analog audio. Furthermore, the speaker can self-diagnose the speaker functionality by utilizing the designed capability to measure frequencies of various square wave test signals. The proposed system running on 200MHz clock yielded restoration of analog output signal with latency of only $500{\mu}s$ compared to directly driving the speakers in a traditional way.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.