DOI QR코드

DOI QR Code

Bending and buckling of porous multidirectional functionality graded sandwich plate

  • Lazreg, Hadji (Department of Civil Engineering, University of Tiaret) ;
  • Fabrice, Bernard (Laboratory of Civil Engineering and Mechanical Engineering, INSA Rennes, University of Rennes) ;
  • Royal, Madan (Department of Mechanical Engineering, G H Raisoni Institute of Engineering & Technology) ;
  • Ali, Alnujaie (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Mofareh Hassan, Ghazwani (Mechanical Engineering Department, Faculty of Engineering, Jazan University)
  • Received : 2022.09.10
  • Accepted : 2023.01.03
  • Published : 2023.01.25

Abstract

Bending and buckling analysis of multi-directional porous functionally graded sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. The principle of virtual displacements was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The validation of the present study has been performed with those available in the literature. The composition of metal-ceramic-based FGM changes in longitudinal and transverse directions according to the power law. Different porosity laws, such as uniform distribution, unevenly and logarithmically uneven distributions were used to mimic the imperfections in the functionally graded material that were introduced during the fabrication process. Several sandwich plates schemes were studied based on the plate's symmetry and the thickness of each layer. The effects of grading parameters and porosity laws on the bending and buckling of sandwich plates were examined.

Keywords

References

  1. Arshid, E., Amir, S. and Loghman, A. (2021), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 23, 3836-3877. https://doi.org/10.1177/1099636220955027.
  2. Arefi, M., Firouzeh, S., Bidgoli, E.M.R. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos. Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
  3. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  4. Cho, J.R. (2022), "Buckling analysis of sandwich plates with FG-CNTRC layers by natural element hierarchical models", J. Mech. Sci. Technol., 36, 1949-1957. https://doi.org/10.1007/s12206-022-0331-3.
  5. Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater., 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
  6. Garg, A., Belarbi, M.O., Tounsi, A., Li, L., Singh, A. and Mukhopadhyay, H. (2022a), "Predicting elemental stiffness matrix of FG nanoplates using Gaussian Process Regression based surrogate model in framework of layerwise model", Eng. Anal. Bound. Elem., 143, 779-795. https://doi.org/10.1016/j.enganabound.2022.08.001.
  7. Garg, A, Chalak, H.D., Belarbi. M.O. and Zenkour, A.M. (2022b), "A parametric analysis of free vibration and bending behavior of sandwich beam containing an open-cell metal foam core", Arch. Civil Mech. Eng., 22(1), 1-15. https://doi.org/10.1007/s43452-021-00368-3.
  8. Garg, A., Belarbi, M.O., Li, L. and Tounsi, A. (2022c), "Bending analysis of power-law sandwich FGM beams under thermal conditions", Adv. Aircraft Spacecraft Sci., 9(3), 243-261. https://doi.org/10.12989/aas.2022.9.3.243.
  9. Hadji, L., Avcar, M. and Civalek, O. (2021), "An analytical solution for the free vibration of FG nanoplates", J. Brazil. Soc. Mech. Sci. Eng., 43, 418. https://doi.org/10.1007/s40430-021-03134-x.
  10. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71, 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  11. Hohe, J. and Librescu, L. (2004), "Advances in the structural modeling of elastic sandwich panels", Mech. Adv. Mater. Struct., 11, 395-424. https://doi.org/10.1080/15376490490451561.
  12. Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R. and Mukhopadhyay, T. (2022), "Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core", Acta Mechanica Solida Sinica, 1-16. https://doi.org/10.1007/s10338-021-00295-z.
  13. Kumar, P. and Harsha, S.P. (2022), "Static analysis of porous core functionally graded piezoelectric (PCFGP) sandwich plate resting on the Winkler/Pasternak/Kerr foundation under thermo-electric effect", Mater. Today Commun., 32, 103929. https://doi.org/10.1016/j.mtcomm.2022.103929.
  14. Kumar Sah, S. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
  15. Liu, K., Zong, S., Li, Y., Wang, Z., Hu, Z. and Wang, Z. (2022), "Structural response of the U-type corrugated core sandwich panel used in ship structures under the lateral quasi-static compression load", Marine Struct., 84, 103198. https://doi.org/10.1016/j.marstruc.2022.103198.
  16. Ma, R. and Jin, Q. (2021), "Buckling analysis of sandwich plates with functionally graded graphene reinforced composite face sheets based on a five-unknown plate theory", Mech. Adv. Mater. Struct., 1-10. https://doi.org/10.1080/15376494.2021.2000078.
  17. Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Proc. Technol., 6, 608-619. https://doi.org/10.1080/2374068X.2020.1731153.
  18. Madan, R. and Bhowmick, S. (2021), "Modeling of functionally graded materials to estimate effective thermo-mechanical properties", World J. Eng., 19(3), 291-301. https://doi.org/10.1108/WJE-09-2020-0445.
  19. Madan, R. and Bhowmick, S. (2022), "Fabrication, microstructural characterization and finite element analysis of functionally graded Al-Al2O3 disk using powder metallurgy technique", Mater. Today Commun., 32, 103878. https://doi.org/10.1016/j.mtcomm.2022.103878.
  20. Naghavi, M., Sarrami-Foroushani, S. and Azhari, F. (2022), "Bending analysis of functionally graded sandwich plates using the refined finite strip method", J. Sandw. Struct. Mater., 24, 448-483. https://doi.org/10.1177/10996362211020448.
  21. Nam, P.V., Nguyen, D.K. and Gan, B.S. (2019), "Vibration analysis of two-directional functionally graded sandwich beams using a shear deformable finite element formulation", Adv. Technol. Innov., 4(3), 152.
  22. Ning, J., Sievers, D.E., Garmestani, H. and Liang, S.Y. (2020), "Analytical modeling of part porosity in metal additive manufacturing", Int. J. Mech. Sci., 172, 105428. https://doi.org/10.1016/j.ijmecsci.2020.105428.
  23. Onvani, D., Jafari, A. and Dehkordi, M.B. (2021), "Carrera unified formulation for bending and free vibration analysis of sandwich plate with FG-CNT faces considering the both soft and stiff cores", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1983899.
  24. Pi, Z., Zhou, Z., Deng, Z. and Wang, S. (2021), "Bending and buckling of circular sandwich plates with a hardened core", Mater., 14, 4741. https://doi.org/10.3390/ma14164741.
  25. Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030. 
  26. Tang, Y., Xiaofei, L. and Yang, T. (2019), "Bi-directional functionally graded beams: Asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156(1), 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
  27. Tang, Y., Wang, T., Ma, Z.S. and Yang, T. (2021a), "Magneto-electro-elastic modelling and nonlinear vibration analysis of bidirectional functionally graded beams", Nonlin. Dyn., 105(3), 2195-2227. https://doi.org/10.1007/s11071-021-06656-0.
  28. Tang, Y., Ma, Z.S., Ding, Q. and Wang, T. (2021b), "Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis", Compos. Struct., 264, 113746. https://doi.org/10.1016/j.compstruct.2021.113746.
  29. Thai, S., Do, D.T.T. and Tan, T.N. (2022a), "Nonlinear bending analysis of variable thickness multi-directional functionally graded plates based on isogeometric analysis", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2022.2088909.
  30. Thai, S., Nguyen, V.X. and Lieu, Q.X. (2022b), "Bending and free vibration analyses of multi-directional functionally graded plates in thermal environment: A three-dimensional Isogeometric Analysis approach", Compos. Struct., 295, 115797. https://doi.org/10.1016/j.compstruct.2022.115797.
  31. Van Vinh, P. and Huy, L.Q. (2022), "Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory", Defence Technol., 18, 490-508. https://doi.org/10.1016/j.dt.2021.03.006.
  32. Vu, T.V., Cao, H.L., Truong, G.T. and Kim, C.S. (2022), "Buckling analysis of the porous sandwich functionally graded plates resting on Pasternak foundations by Navier solution combined with a new refined quasi-3D hyperbolic shear deformation theory", Mech. Bas. Des. Struct. Mach., 1-27. https://doi.org/10.1080/15397734.2022.2038618.
  33. Ye, R., Zhao, N., Yang, D., Cui, J., Gaidai, O. and Ren, P. (2021), "Bending and free vibration analysis of sandwich plates with functionally graded soft core, using the new refined higher-order analysis model", J. Sandw. Struct. Mater., 23, 680-710. https://doi.org/10.1177/1099636220909763.
  34. Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015.
  35. Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42, 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016.
  36. Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
  37. Zhen, Y., Gong, Y. and Tang, Y. (2021), "Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature", Compos. Struct., 268, 113980. https://doi.org/10.1016/j.compstruct.2021.113980.