• Title/Summary/Keyword: Multi-frequency inversion method

Search Result 14, Processing Time 0.019 seconds

Zooplankton Biomass and Size Estimation Using a Multi-frequency Acoustic System (고주파 다주파 음향시스템을 이용한 동물성 플랑크톤의 크기별 생물량 추정)

  • Hwang, Bo-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.1
    • /
    • pp.54-60
    • /
    • 2008
  • High- and multi-frequency acoustic systems can measure a zooplankton patch successively and estimate the spatial distribution and abundance of zooplankton according to size using a multi-frequency inversion (MFI) method. This study measured zooplankton distribution to a depth of 150m using a multi-frequency acoustic system (TAPS-6), installed on a CTD system with a fluorometer and analyzed it using the MFI method. Simultaneously, zooplankton samples were collected by north pacific standard (NORPAC) net to confirm the species composition. The results showed that the combined method is valuable for estimating the zooplankton profile in detail and investigating the relationship between the zooplankton and phytoplankton profiles.

Resistivity and Calibration Error Estimations for Small-Loop Electromagnetic Method

  • Sasaki, Yutaka;Son, Jeong-Sul;Kim, Chang-Ryol;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.167-172
    • /
    • 2007
  • The frequency-domain small-loop electromagnetic (EM) instruments are increasingly used for shallow environmental and geotechnical surveys because of their portability and speed. However, it is well known that the data quality is generally so poor that quantitative interpretation of the data is not justified in many cases. We present an inversion method that allows the correction for the calibration errors and also constructs multidimensional resistivity models. The key point in this method is that the data are collected at least at two different heights. The forward modeling used in the inversion is based on an efficient 3-D finite-difference method, and its solution was checked against 2-D finite-element solution. The synthetic and real data examples demonstrate that the joint inversion recovers reliable resistivity models from multi-frequency data severely contaminated by the calibration errors.

  • PDF

Effectiveness of multi-mode surface wave inversion in shallow engineering site investigations (토목관련 천부층 조사에서 다중 모드 표면파 역산의 효과)

  • Feng Shaokong;Sugiyama Takeshi;Yamanaka Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.26-33
    • /
    • 2005
  • Inversion of multi-mode surface-wave phase velocity for shallow engineering site investigation has received much attention in recent years. A sensitivity analysis and inversion of both synthetic and field data demonstrates the greater effectiveness of this method over employing the fundamental mode alone. Perturbation of thickness and shear-wave velocity parameters in multi-modal Rayleigh wave phase velocities revealed that the sensitivities of higher modes: (a) concentrate in different frequency bands, and (b) are greater than the fundamental mode for deeper parameters. These observations suggest that multi-mode phase velocity inversion can provide better parameter discrimination and imaging of deep structure, especially with a velocity reversal, than can inversion of fundamental mode data alone. An inversion of the theoretical phase velocities in a model with a low velocity layer at 20 m depth can only image the soft layer when the first higher mode is incorporated. This is especially important when the lowest measurable frequency is only 6 Hz. Field tests were conducted at sites surveyed by borehole and PS logging. At the first site, an array microtremor survey, often used for deep geological surveying in Japan, was used to survey the soil down to 35 m depth. At the second site, linear multichannel spreads with a sledgehammer source were recorded, for an investigation down to 12 m depth. The f-k power spectrum method was applied for dispersion analysis, and velocities up to the second higher mode were observed in each test. The multi-mode inversion results agree well with PS logs, but models estimated from the fundamental mode alone show f large underestimation of the depth to shallow soft layers below artificial fill.

Retrieval of surface parameters in tidal flats using radar backscattering model and multi-frequency SAR data

  • Choe, Byung-Hun;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • This study proposes an inversion algorithm to extract the surface parameters, such as surface roughness and soil moisture contents, using multi-frequency SAR data. The study areas include the tidal flats of Jebu Island and the reclaimed lands of Hwaong district on the western coasts of the Korean peninsula. SAR data of three frequencies were accordingly calibrated to provide precise backscattering coefficients through absolute radiometric calibration. The root mean square (RMS) height and the correlation length, which can describe the surface roughness, were extracted from the backscattering coefficients using the inversion of the Integral Equation Method (IEM). The IEM model was appropriately modified to accommodate the environmental conditions of tidal flats. Volumetric soil moisture was also simultaneously extracted from the dielectric constant using the empirical model, which define the relations between volumetric soil moistures and dielectric constants. The results obtained from the proposed algorithm were verified with the in-situ measurements, and we confirmed that multi-frequency SAR observations combined with the surface scattering model for tidal flats can be used to quantitatively retrieve the geophysical surface parameters in tidal flats.

Application of Displacement-Vector Objective Function for Frequency-domain Elastic Full Waveform Inversion (주파수 영역 탄성파 완전파형역산을 위한 변위벡터 목적함수의 적용)

  • Kwak, Sang-Min;Pyun, Suk-Joon;Min, Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information (최소 사전정보틀 이용한 주파수 영역 항공 전자탐사 자료의 HOLISTIC 역산)

  • Brodie, Ross;Sambridge, Malcolm
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2009
  • The holistic inversion approach for frequency domain airborne electromagnetic data has previously been employed to simultaneously calibrate, process and invert raw frequency-domain data where prior information was available. Analternative formulation has been developed, which is suitable in the case where explicit prior information is not available. It incorporates: a multi-layer vertically-smooth conductivity model; a simplified bias parameterisation; horizontal smoothing with respect to elevation; and cluster computer parallelisation. Without using any prior data, an inversion of 8.0 million data for 3.4 million parameters yields results that are consistent with independently derived calibration parameters, downhole logs and groundwater elevation data. We conclude that the success of the holistic inversion method is not dependent on a sophisticated conceptual model or the direct inclusion of survey-area specific prior information. In addition, acquisition costs could potentially be reduced by employing the holistic approach which largely eliminates the need for high altitude zero-level measurements.

Application of Effective Regularization to Gradient-based Seismic Full Waveform Inversion using Selective Smoothing Coefficients (선택적 평활화 계수를 이용한 그래디언트기반 탄성파 완전파형역산의 효과적인 정규화 기법 적용)

  • Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • In general, smoothing filters regularize functions by reducing differences between adjacent values. The smoothing filters, therefore, can regularize inverse solutions and produce more accurate subsurface structure when we apply it to full waveform inversion. If we apply a smoothing filter with a constant coefficient to subsurface image or velocity model, it will make layer interfaces and fault structures vague because it does not consider any information of geologic structures and variations of velocity. In this study, we develop a selective smoothing regularization technique, which adapts smoothing coefficients according to inversion iteration, to solve the weakness of smoothing regularization with a constant coefficient. First, we determine appropriate frequencies and analyze the corresponding wavenumber coverage. Then, we define effective maximum wavenumber as 99 percentile of wavenumber spectrum in order to choose smoothing coefficients which can effectively limit the wavenumber coverage. By adapting the chosen smoothing coefficients according to the iteration, we can implement multi-scale full waveform inversion while inverting multi-frequency components simultaneously. Through the successful inversion example on a salt model with high-contrast velocity structures, we can note that our method effectively regularizes the inverse solution. We also verify that our scheme is applicable to field data through the numerical example to the synthetic data containing random noise.

Soft Ground Investigations Using Small Loop EM (소형루프 전자탐사법을 이용한 연약지반 조사)

  • Kim, Ki-Ju;Cho, In-Ky;Lim, Jin-Taik;Kyeung, Keu-Ha;Kim, Bong-Chan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.245-250
    • /
    • 2007
  • The small loop EM method is a fast and convenient geophysical tool which can give shallow subsurface resistivity distribution. It can be a useful alternative of resistivity method in conductive environment. We applied the multi-frequency small loop EM method for the investigation of a soft ground landfill site which was constructed on a tideland since the resistivity of the survey area is extremely low. 3D resistivity distribution was obtained by merging 1D inversion results and shallow subsurface structure can be interpreted. By comparing the result with the drilling log and measured soil resistivity sampled at 16 drill holes, we can get lot of information such as groundwater level, thickness of landfill, salinity distribution, depth to the basement and etc.

  • PDF

A Chip Design of Body Composition Analyzer (체성분 분석용 칩 설계)

  • Bae, Sung-Hoon;Moon, Byoung-Sam;Lim, Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.26-34
    • /
    • 2007
  • This Paper describes a chip design technique for body composition analyzer based on the BIA (Bioelectrical Impedance Analysis) method. All the functions of signal forcing circuits to the body, signal detecting circuits from the body, Micom, SRAM and EEPROMS are integrated in one chip. Especially, multi-frequency detecting method can be applied with selective band pass filter (BPF), which is designed in weak inversion region for low power consumption. In addition new full wave rectifier (FWR) is also proposed with differential difference amplifier (DDA) for high performance (small die area low power consumption, rail-to-rail output swing). The prototype chip is implemented with 0.35um CMOS technology and shows the power dissipation of 6 mW at the supply voltage of 3.3V. The die area of prototype chip is $5mm\times5mm$.