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Abstract.

The holistic inversion approach for frequency domain airborne electromagnetic data has previously been

employed to simultaneously calibrate, process and invert raw frequency-domain data where prior information was available.
Analternative formulation has been developed, which is suitable in the case where explicit prior information is notavailable. It
incorporates: a multi-layer vertically-smooth conductivity model; a simplified bias parameterisation; horizontal smoothing
with respect to elevation; and cluster computer parallelisation. Without using any prior data, an inversion of 8.0 million data
for 3.4 million parameters yields results that are consistent with independently derived calibration parameters, downhole logs
and groundwater elevation data. We conclude that the success of the holistic inversion method is not dependent on a
sophisticated conceptual model or the direct inclusion of survey-area specific prior information. In addition, acquisition costs
could potentially be reduced by employing the holistic approach which largely eliminates the need for high altitude zero-level

measurements.
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Introduction

It is well established that frequency-domain airborne
electromagnetic (AEM) data can be adversely influenced by
weaknesses in standard in-field calibration procedures. For
example, Fitterman (1998) identified potential sources of error
in on-ground calibration procedures that result in gain (amplitude
scaling) and phase (discrepancy between transmitter and receiver
time references) errors. Huang and Fraser (1999) discussed
reasons why estimates of system bias (zero-level) based on
high altitude observations may not yield accurate results.
Furthermore, height (inaccurate altimetry) errors have been
noted by Beamish (2002) and Brodie and Lane (2003). These
errors, which we collectively call ‘systematic calibration errors’,
must be removed during data processing, or somehow accounted
for, if optimal interpretation results are to be achieved.

Data processing usually involves subtraction of high altitude
zero-level estimates, filtering to remove short period noise
(e.g. powerline noise), and levelling. Levelling is primarily
guided by the aim of generating apparent conductivity maps
that are spatially coherent and free of artefacts (i.e. features
that the processor considers to be non-geological in origin). To
remove artefacts the processor chooses to adjust some
combination of gain, phase, bias or height parameters. The
processing is carried out independently for each frequency and
can involve several time consuming sequentially applied
correction iterations (Valleau, 2000). Huang and Fraser (1999)
noted that poor levelling decisions can generate false features and
eliminate real features.

Brodie and Sambridge (2006) argue that because of the
complex non-linear relationship between the calibration
parameters and the in-phase and quadrature data, and thence
the apparent conductivity, it is unlikely that even an experienced
processor can choose the correct combination of parameters to
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adjust. They argue that sequentially applied corrections allow the
propagation of errors from one processing step to the next. They
consider conventional levelling to be an inherently subjective
process, and because levelling is independent for each frequency,
it is impossible to identify and correct any inter-frequency
inconsistencies that may exist, or to ensure that additional
inconsistencies are not introduced. They further argue that,
although a degree of optimisation may be achieved through
conventional processing, the final result is far from the best
that might result from a more objective and systematic approach.

Because of weaknesses in system calibration and data
processing procedures it is often found that the data misfit
achieved through inversion is unacceptable or that the inversion
results are inconsistent with prior information (Deszcz-Pan et al.
1998; Brodie et al., 20045). Alternative methods of calibrating
and processing frequency-domain AEM data have been suggested
by Deszcz-Pan et al. (1998), Huang and Fraser (1999), Green
(2003) and Ley-Cooper and Macnae (2004).

A further method, called the holistic approach, was outlined
by Brodie and Sambridge (2004) and formally described by
Brodie and Sambridge (2006), the later of which we
hereinafter call Paper 1. The crux of the holistic approach is
that the data are simultaneously calibrated, processed and
inverted. The parameters of a mathematical model that
accounts for systematic calibration errors are solved for in
addition to a single conductivity model that covers the whole
survey area. By calibrating and inverting all the data at once,
rather than in conventional sample-by-sample fashion, the
method can fully exploit the anticipated true inter-frequency
and spatial coherency of the geological signal in the data.

In contrast to conventional methods, where separate discrete
1D models are associated with every airborne sample, the holistic
approach is used to simultaneously invert the entire airborne
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dataset (plus any available independent conductivity and
interface-depth data) to solve for all of the parameters of a 3D
model in one procedure. Because the entire set of parameters of
the 3D model are derived simultaneously, the output is quite
different to post-inversion stitching together the results of
independent 1D models. It is also important to note that the
electromagnetic forward model and derivative calculations are all
carried out using 1D local models extracted from the 3D model.
This means we are unable to take advantage of sophisticated 3D
modelling, however the scheme makes the inversion of large
regional datasets computationally feasible, while still outputting a
3D model with controlled spatial coherency.

In Paper 1 the holistic approach was demonstrated to be
successful with synthetic and real survey data. It was
concluded that the holistic approach: produced superior results
in comparison to conventional techniques; that it reduced the
subjectivity of data processing decisions; and that it potentially
provides cost savings. However, in Paper 1, several downhole
conductivity logs and groundwater depth data were available for
use as explicit prior information. Reference model constraints
were also provided by a sophisticated five layer conceptual
model with reliable reference values that were generated from
prior statistical constraints. The availability of explicit prior
information perhaps made this an ideal situation.

The question remained as to how well the method would
perform in a less ideal situation where good prior information
is not available, and this is what we investigate in this paper.
We first briefly review the holistic inversion formulation and
then outline some refinements. These include, a new bias
parameterisation and use of lateral roughness constraints
that are based on elevation rather than depth. The modified
scheme is illustrated with an example where no explicit prior
information is used. We also describe how the holistic inversion
code has been parallelised so that it can be run in a distributed
computing environment thereby making inversion of large
datasets possible.

Despite not using explicit prior information in the holistic
inversion, we find that the recovered conductivity model
is geologically plausible and consistent with downhole logs
and groundwater depth data. Zero-levels predicted from the
calibration model correlate well with zero-level measurements
recorded at high altitude. Gain values are similar to gain values
that would be predicted from downhole log data. We conclude
that the holistic inversion can be used in many cases where little
prior information is available.

Holistic inversion review
Introduction

The philosophy behind the holistic approach is as follows. (1) All
frequencies are considered together so that the anticipated
true inter-frequency coherency of the geological signal can
be exploited and any inter-frequency inconsistency can be
detected and corrected. (2) All airborne samples are inverted
simultaneously so that the expected spatial coherency of the
geological signal can be exploited. (3) Calibration, processing
and inversion stages are combined into one procedure, ensuring
that assumptions made for each stage are consistent. This one-
stage procedure avoids propagation of errors that can occur when
multiple sequential processing steps are applied. (4) The formal
inversion approach, where error sources are accounted for,
minimises the subjectivity that is inherent in conventional
processing schemes. (5) The framework allows a single 3D
conductivity model to be derived that is consistent with all the
airborne data, independent conductivity data and independent

interface-depth data, as well as prior expectation of subsurface
conductivity.

Model

The inversion model consists of the conductivity model and the
calibration model. The subsurface is assumed to be comprised of
N layers whose conductivity and thickness varies laterally in
smooth and continuous fashion. At any horizontal location the
conductivity is constant from the top to the bottom of each layer.
The natural logarithm of the N layer conductivities and N-/ layer
thicknesses are parameterised by separate bicubic B-spline
meshes. The spline node spacing may be different on each
mesh and in each direction, and can be chosen so they
adequately represent conductivity variations with as few nodes
as possible. The spline node coefficients are the unknown
parameters of the calibration model that we solve for in the
inversion.

The calibration model comprises gain, phase, bias and
height-error terms. There are several possible ways that we
could choose to parameterise the calibration model. The
choice is guided by knowledge of the types of calibration
problems that are expected to exist in the system and how they
are expected to vary over time. In Paper 1, we assumed: (1) gainto
be constant for each frequency for a complete survey; (2) phase to
be constant for each frequency for each day of flying; (3) bias
to vary piecewise linearly over a flight for each in-phase and
quadrature channel; and (4) height-errors to be constant for all
frequencies over a complete survey. For the gain, phase and
height-error factors, the unknown parameters in the inversion
were simply discrete values for the relevant survey-frequency,
survey-frequency-day or survey combination respectively.
However the unknown bias parameters were a mixture of bias
and bias drift rates.

Observed data

The three data types considered are, airborne, geoelectric and
interface-depth measurements. We use essentially raw AEM
data that have not had zero-levels removed or other
conventional data levelling corrections applied. We do
however pre-apply conventional powerline and sferic removal
filters (e.g. ~9 point median and hanning filtering) and reverse
instantaneous level shifts that are sometimes introduced into the
data during high-level zero-level calibrations, so that we are left
with a continuous record of each channel of information without
any discontinuities.

Geoelectric data are independent values for the logarithm of
conductivity at specific locations for specific depth ranges.
Typically these data will come from downhole conductivity
logs or inversions of ground electromagnetic survey data.

Interface-depth data are any information that is available
regarding the depth at a specific location to a specific interface
in the layered conductivity model. These could, for example,
include the depth to standing water level observed in boreholes or
depth to basement information.

Forward problem

To predict data for each airborne sample we first compute the local
1D vertical conductivity profile (o, t) that is directly below the
sample’s location from the spline meshes. We then compute the
set of local calibration values that are relevant to the sample. For
every frequency this involves selection of local gain (g), phase (¢)
and height-error (44) values from a lookup table and calculation
of the local in-phase (b), and quadrature (b7) biases from the
start bias and drift rate parameters of the calibration model. The
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extracted local 1D conductivity profile is forward modelled to
produce its ‘theoretical’ airborne response, which is then
transformed to the predicted airborne in-phase (dl"f’) and
quadrature (dg) data via the calibration model equation,

P g4 — il b
dy +jd} = ge”’(s(a,t,h + 4h) + (b” +jbT)). (1)

Here the complex function s(o, t, 2+ 4h) is the forward model
algorithm, /4 is the altimeter measured transmitter and receiver
loop height and j = v/—1.

To predicta geoelectrical datum (d5°”), we similarly extract the
local 1D conductivity profile for the datum’s specified location
from the spline meshes. We then average the natural logarithm of
the 1D profile’s conductivity over the datum’s specified depth
range. Likewise to predict an interface-depth datum (d;;”’ ), we
extract the local 1D conductivity profile and then sum the
thicknesses of all layers in the profile that are above the
datum’s specified interface.

Analytic expressions have been derived for the derivatives of
all three data types with respect to the parameters of the
conductivity and calibration models; however they are omitted
here for brevity.

Inversion

In the inversion we seek the model that minimises an objective
function of the form,

D=P,+ LD, + 1,P, + ;”y(py + 2.D, + ApDyp. (2)

Here @, is a data misfit term defined in the usual noise-normalised
least-squares sense. The term @, quantifies the differences
between the inversion model and a reference model,
normalised by prior uncertainty. Constraints on the spatial
roughness of the conductivity model are imposed through the
terms @, @, and @, which are measures of the second derivative
of the conductivity in the east-west, north—south and vertical
directions respectively. Similarly, @, is a measure of the
roughness of channel biases. The A’s are multipliers that
weight the relative importance of each of the terms.

We minimise the non-linear objective function via a linearised
gradient-based iterative scheme. We choose a set of initial model
parameters equal to the reference model parameters. The model
parameters are then iteratively updated, after solving a linear
system via the conjugate gradient method at each iteration.

Because we wish to invert all the airborne data for a
conductivity model that covers the entire survey area at once,
the linear system to be solved is large. However, an
important feature of the bicubic B-spline conductivity model
parameterisation is that each datum is influenced by just the 16
adjacent spline nodes on each mesh. This means that most of
entries in the Jacobian (and other matrices in the formulation) are
zero. Therefore sparse matrix algebra and storage algorithms can
be employed, making the inversion of large datasets more
feasible. We have previously been able to solve systems with
up to 575000 data and 148 000 parameters on a single desktop
computer. In that case we used packages SparseLib++ and
IMLA++ described by Dongarra et al. (1994).

Inversion with minimal prior information

In Paper 1 we demonstrated the successful application of the
method for the case where specific survey-area prior information
was available. However, without this information in the form of
downhole conductivity logs, ground electromagnetic surveys or
interface depths it is difficult to choose a suitable conceptual
conductivity model and build an accurate reference model with

associated uncertainties. A shortage of prior information may also
limit our understanding of the geological layering and how it
should be translated to a conceptual conductivity model. In this
section we outline how the holistic inversion can be applied when
specific prior information for the survey area is not available or is
not included directly in the inversion.

Conductivity model parameterisation

In Paper 1 and in Brodie et al. (20040), a variable-thickness
conductivity model in which each of'the five layers corresponded
to a specific unit in the well understood conceptual (hydro)
geological model, was used. Because reliable strong prior
information was available, we could impose tight constraints
on the layer properties, which made it possible to solve for the
layer thicknesses in a stable manner. In those circumstances, a
few-layer parameterisation was a good choice because the model
could be tailored to adequately represent the true conductivity
variations with a minimal number of unknowns. Furthermore,
because the inversion parameters were direct proxies for (hydro)
geological features there was no need to carry out additional post-
inversion manipulations to extract features which downstream
users required, such as clay thickness and watertable depth.

However, in the absence of good prior knowledge, there is no
way to know how to choose a generic few-layered model that can
adequately represent the large possible (but unknown) range of
vertical conductivity profile shapes. In such cases, a multi-layer
parameterisation is a suitable choice because it can represent a
wide range of profile shapes. In this type of parameterisation,
particular layers in the model do not correspond to particular
geological features. Instead the features must be extracted by
some post-inversion manipulation or interpretation. To improve
stability itis necessary to fix the layer thicknesses and to regularise
the vertical profile shape, with for example, smoothness
constraints (Constable et al., 1987). Because we are simulating
the case where there is an absence of good prior information, we
have chosen to adopt this multi-layer, fixed-thickness, vertically-
smooth style of parameterization for the examples presented in
this paper.

Conductivity roughness regularisation

In Paper 1 lateral conductivity roughness constraints were
imposed by inclusion of east-west and north—south roughness
terms in the objective function that was to be minimised. This
required the building of east-west and north—south roughness
matrices that were denoted L, and L,. These matrices were
linear second finite difference operators that operated on the
natural logarithms of layer conductivities and thicknesses at
spatially adjacent spline mesh intersections in the respective
directions. Entries in the matrices were in the familiar form
[...1...—=2...1...] (Menke, 1989). These horizontal roughness
terms promote smoothness of each layer conductivity and
thickness, irrespective of layer elevation. Therefore the
conductivity was encouraged to be smooth with respect to
depth and thus topography. In some geological settings
(e.g. where conductivity is controlled by weathering) this
is suitable, however in others (e.g. where conductivity is
hydrogeologically controlled) it is more reasonable to expect
the conductivity to be smooth with respect to elevation.

In this paper, we have chosen to follow the later approach and
show by the example in Figure 1 how the roughness matrices are
built. A portion ofa conductivity model is shown with the position
of spline nodes marked on its uneven topographic surface. We
denote the conductivity node for the ith layer at the jth node (from
the left) as n; ; and its thickness as ¢; ;. To calculate the entries for
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Fig.1. Portion ofa conductivity model showing spline node locations on the
topography. Thelengths O3 1, O4 1, O> g, and Os g are overlaps between layers
at adjacent spline nodes, required for construction of the horizontal roughness
matrices.

the row in the roughness matrices that corresponds to node 7, ;, we
find all layers that, at the adjacent left and right hand nodes,
partially span the same elevation range as the ith layer at the jth
node, and calculate the amount of layer overlap. For example in
the specific case of node 75 5 the relevant (i.e. non-zero) overlaps
are marked Osz, O 1, O, g, and O; g. Therefore entries in the
roughness matrices will be in the form [.. f5,.. . fa . ..—2...
for- - Sfrr. - -], where f,;, are fractional overlap terms defined as
Ja»=044/t3 5. Typically there will be five non-zero entries in each
row of the roughness matrices, however in general there may be
more or less non-zero entries depending on the topographic
variations and layer thicknesses.

Bias parameterisation and regularisation

To parameterise the piecewise linear bias variation, in Paper 1 we
used the value at the beginning of the flight and drift rates over set
time intervals. Here we only use the bias values at set equally
spaced time intervals throughout the flight. The advantage is that
the number of physically different parameter classes is reduced
and the construction of the matrix used for mapping model
parameters to reference values is simplified.

Data

Only AEM data are used. We have not modified the form of
the airborne data, its pre-processing or the method of its
prediction.

Parallelisation

The size of the holistic inversion we are able to run on a standalone
computer is limited mainly by the available computer memory
and to a lesser degree by execution time. For the real data example
in Paper 1, the largest dataset we inverted with 2 GB memory and
the chosen model parameterisation was a 2590 line km subset of a
survey sub-sampled to every 17th sample (~50 m). This was by no
means an insubstantial AEM dataset size but mapping—style
surveys in Australia can be several times larger.

Part of the philosophy of the holistic inversion is to include as
much data as possible so that spatial coherency can be exploited,
so ideally we would prefer to invert the complete dataset at once.
In a multi-layer vertically-smooth parameterisation, we usually
require at least twice as many model parameters as in the few-layer
parameterisation. We have been motivated by these factors to
parallelise the holistic inversion code to allow inversion of
complete datasets with a larger number of samples.
Parallelisation has allowed us to invert our largest frequency
domain AEM dataset (11476 line km) sub-sampled to every
fifth value.

The holistic inversion code was parallelised to run on cluster
computers under the Message-Passing Interface (MPI) standard
(MPI Forum, 1994). The 1D forward modelling and derivative
calculation portion of the algorithm scales linearly (i.e. doubling
the processors halves the time) because the calculations for all
airborne samples can be carried out independently on separate
processors without requiring any inter-process communication.
We have used the package PETSc (Balay et al., 2005) for sparse
compressed row distributed storage of the matrices. This allows
us to access 10 s of gigabytes of random access memory which is
not available on a single processor. We have used the conjugate
gradient algorithm within PETSc, for solving the sparse linear
system in parallel at each iteration. This solver does require inter-
process communication and thus does not scale linearly. We
therefore choose to use only as many processors as was necessary
to access the total required amount of distributed memory.

Results

We demonstrate holistic inversion using data acquired with the
RESOLVE system over the Riverland area in South Australia
during 2002. The system was configured in this survey with six
coil-sets operating at the frequencies 385, 1518, 3323, 6135,
25380 and 106 140 Hz. The transmitter-receiver separation was
7.86 m for the five horizontal coplanar coil sets, and 8.99 m for the
single vertical-coaxial (3323 Hz) coil set. The survey was flown
with a nominal bird height of 30 m along north—south flight lines
spaced mainly at 150 m, butat 300 min part of the area. East—west
tie lines were flown at ~6 km spacing.

This dataset has been the subject of several previous studies.
Brodie et al. (2004a) and Ley-Cooper and Macnae (2004)
identified calibration problems in the Riverland dataset. Brodie
et al. (2004b) inverted the dataset with conventional 1D sample-
by-sample inversion. In Paper 1, we applied the holistic inversion
to a subset of the Riverland dataset. As discussed earlier, we used
a conductivity model with five layers each having a variable
conductivity and thicknesses. A five layer model was appropriate
in that case. Each layer corresponded to a layer in our conceptual
geoelectrical model. We had sufficient prior information
to generate a reliable reference model and we used geoelectric
(downhole conductivity logs) and interface-depth (groundwater
depths) data as explicit constraints.

In this paper, the entire 11476 line km of airborne data sub-
sampled to every fifth sample (~18 m) were inverted. The input
airborne data were raw except for the aforementioned reversal of
instantaneous level shifts that are sometimes introduced during
high altitude zero-level observations, and powerline filtering to
remove powerline and sferic effects. A small percentage (0.27%)
of data were excised in zones where the filters did not adequately
removed powerline and sferic noise. There were 89 flights, and
597 lines in the airborne dataset acquired during 37 days of flying.
We did not use geoelectrical or interface-depth data even though
they were available. There were 8 078 352 data in total; made up
of 673 196 airborne samples each having 12 channels. We used
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the estimates of airborne data uncertainties shown in Table 3 of
Brodie etal. (20045) that were derived from analysis of repeat line
data (Green and Lane, 2003).

The alternative multi-layer parameterisation of 20 layers with
fixed thicknesses was used throughout the inversion. The layers
get progressively thicker with depth, from 1.5 m for layer one to
9.0 m for layer nineteen, while the bottom layer is infinitely thick.
A node spacing of 100 m is used in both horizontal directions for
every layer conductivity mesh. There were 3 404 788 unknowns
in total, of which 6768 were calibration (6 gain, 222 phase and
6540 bias) parameters. We did not have reason to believe that
there were systematic height errors present in this dataset so we
did not solve for height-errors.

A homogenous 0.5 S/m conductivity reference model was
used. We specified an extremely large standard deviation (prior
uncertainty) of 200 natural logarithm units for these reference
values so that a very wide range of conductivities were permitted.
Reference values of 1.0, 0.0 degrees and 0.0 ppm were used for
gain, phase and bias values, respectively. Standard deviations on
the gain and phase parameters were 0.1 and 3.0, and for bias
values they were taken from the statistics calculated by Brodie and
Sambridge (2006). Vertical roughness constraints were imposed
by minimising the second derivative of the vertical conductivity
structure. We also used lateral roughness constraints that
minimised the second derivative of the conductivity structure
in both the north-south and east-west directions. The lateral
constraints were imposed by second finite difference matrices
constructed as described earlier in the section ‘conductivity
roughness regularisation’. The degree of smoothing was
chosen by initially setting the regularisation weights i, 4,, 4.,
(equation 2) to large values and then reducing them manually until
the data were able to be fitted. Roughness constraints were
imposed on the estimates of the bias for each channel by
minimising the second derivative of the bias with respect to time.

The holistic inversion was run on 64 processors of the
Terrawulf  computational facility  (http://rses.anu.edu.au/
terrawulf) under MPI. Each processor ran at 2.4 GHz and had
access to 1 GB of memory. The total execution time was 8.22 h
and ~51 GB of memory were required.

Figure 2 demonstrates that there is an excellent match between
the gain values estimated from the holistic inversion and the gain

15
385 Hz
1al @
+ 1518 Hz
S 13 A 3323Hz
w
S 12| * 6185Hz
E + 23580 Hz
= 11
o W 106140 Hz
o
<z 1 +/®
£
S 09
e)
Q
T 08
£
k7
W o7
0.6
0.5 :
0.5 1 15

Estimated gain (Downhole logs)

Fig. 2. Gain values estimated from downhole logs versus gain values
estimated from the holistic inversion calibration model.

values estimated independently from downhole log data (Brodie
et al., 2004a).

Under normal circumstances we would use the zero-level
values recorded at high altitude as the reference model values
for the bias. However in this work they were omitted. Instead, all
reference values for bias parameters were set to zero, which
allows us to see whether they can be estimated directly from the
inversion procedure. A strong correlation is clearly evident in
Figure 3, which shows a comparison between the zero-level
values recorded at high-altitude and the corresponding bias
values estimated from the holistic inversion. As in Paper 1 the
greatest discrepancies are in the 106 140 Hz estimates, however
in this case the discrepancies are reduced. This may be a
consequence of the greater flexibility in the multi-layer-model
parameterisation. The good correlation leads us to believe that,
under the right conditions, it may be feasible to eliminate high
altitude zero-level observations altogether, which would reduce
acquisition costs considerably.

A comparison of downhole conductivity log measurements
and conductivities estimated from the inversion model is shown in
Figure 4. The data relate to the average conductivity over every
5m interval for all the 44 available logs. The correlation is high
(R*=0.81), although the inversion estimates are slightly biased
towards higher conductivities. Individual conductivity-depth
plots for all 44 logs are shown in Figure 7. Our overall
assessment is that the holistic inversion has been able to
estimate the vertical conductivity structure well. It appears that
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Fig. 3. Observed high altitude zero-levels (horizontal axis) versus zero-

levels estimated from the holistic inversion calibration model (vertical axis).
All axes range from —300 to 300 ppm.
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Fig. 4. A comparison of downhole log conductivity measurements and
holistic inversion model conductivities.

the vertical smoothness constraints may have prevented a good
estimation of some logs that have rapid changes (e.g. MTHS8 and
RIVOHC).

Figures 5 and 6 show the estimated conductivity of Layer 5
and Layer 12 in the holistic inversion model respectively. These
images are almost totally free of any elongate anomalies
coincident with the north—south flight lines. This suggests that
the calibration model has adequately accounted for calibration
effects in the raw data.

These conductivity images along with the conductivity-depth
sections that are shown in Figure 8 are consistent with the
conceptual geological model and prior information detailed by

Layer 5 (7.75 to 10.22 m depth)
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Fig. 5. Conductivity of Layer 5 (7.75 to 10.22m depth) in the inversion
model. Inversion model sections for lines A to D are shown in Figure 8.

[ Layer 12 (31.59 to 36.57 m depth)
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Fig. 6. Conductivity of Layer 12 (31.59 to 36.57 m depth) in the inversion
model. Inversion model sections for lines A to D are shown in Figure 8.

Brodie et al. (2004b). Without using any of that prior knowledge
the holistic inversion has revealed: (1) a saline watertable at depth,
including abulge (e.g. Section B) near its top; (2) a generally more
resistive upper section where sand dunes and dry sands are
expected; (3) a near surface conductor that is locally dissected;
and (4) a strong north-west to south-east grain which is consistent
with the existence of Pliocene strandlines.

Brodie et al. (2004b) generated a ground water elevation
surface by gridding groundwater data from boreholes. This
surface is plotted on the conductivity-depth sections and
appears as a black line at ~15-20 m elevation. It is noteworthy
that the groundwater elevation surface correlates well with the
section’s pronounced rapid conductivity increase (yellow-orange
transition) at depth. We thus believe that the conductivity model
provides an effective means of mapping the elevation of the saline
watertable. An apparently anomalous conductive zone is evident
above the water table surface at 17 000 m on Section C (Figure 8).
Mineralogical analysis by Tan et al. (2004) of materials from bore
RIVI9HC, which intersects the edge of the anomaly, indicated that
this anomaly is due to highly conductivity kaolinitic clay between
4 and 16 m depth that sits above the water table which is at
22 m depth. This is confirmed by the conductivity log shown in
Figure 7.

Summary and conclusions

It had previously been demonstrated that the holistic approach
was an objective means of overcoming the weaknesses of in-field
calibrations and subjective processing decisions that result in data
that cannot be fitted with plausible conductivity models.
However, it had only been demonstrated in cases where
substantial prior information was available.

The alternative formulation presented here was implemented
and run without using any survey-area specific prior data
whatsoever. The resulting calibration model parameters are
consistent with independent methods of deriving calibration
parameters. Since the bias estimated from the inversion
correlates well with the zero-levels observed at high-altitude,
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Fig.7. Comparison of the 42 downhole conductivity logs (grey line) in the survey area and the conductivity model estimated from the holistic inversion (black
line). Note thatnone of these logs (orany others) were used in the inversion, but the inversion is able to recover most profiles well. On all plots the vertical axis ranges
from 0 to 60 m depth and the logarithmic scale horizontal axis ranges from 0.001 to 10 S/m.
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Fig.8. A selection of conductivity sections through the holistic inversion model. The locations of the sections are shown on Figures 5 and 6. Any boreholes that
have downhole conductivity logs and are within 300 m of a section have been indicated on the section. The top of the watertable surface is shown by the black line at

~15-20 m elevation.

we believe that there is potential for high altitude observations to
be eliminated completely with associated cost saving in
acquisition. The resulting conductivity model correlates well
with downhole log conductivity data and conceptual
geological models. It has also mapped the watertable elevation
satisfactorily.

These results demonstrate that the holistic approach is not
reliant on a sophisticated conceptual model or direct inclusion of
survey-area specific prior conductivity information. The ‘softer’
regularisation constraints that were used might be expected to be
applicable in a broad range of situations. Our use of independent
prior information to assess the accuracy of the results has however
provided extremely valuable feedback on the suitability of the
parameterisation and constraints used for the specific example
presented in this paper.

The success of this work should not be interpreted as an
argument for neglecting prior information in AEM inversions.
On the contrary, the information that is recovered from an
inversion is always enhanced by appropriate prior information,
and indeed we would always prefer it to be available and used as
we did in Paper 1. However, here we have demonstrated the
suitability of our algorithm in the less desirable situation where
explicit prior information is lacking.
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