DOI QR코드

DOI QR Code

Application of Effective Regularization to Gradient-based Seismic Full Waveform Inversion using Selective Smoothing Coefficients

선택적 평활화 계수를 이용한 그래디언트기반 탄성파 완전파형역산의 효과적인 정규화 기법 적용

  • Park, Yunhui (Department of Energy Resources Engineering, Inha University) ;
  • Pyun, Sukjoon (Department of Energy Resources Engineering, Inha University)
  • 박윤희 (인하대학교 에너지자원공학과) ;
  • 편석준 (인하대학교 에너지자원공학과)
  • Received : 2013.05.17
  • Accepted : 2013.09.30
  • Published : 2013.11.30

Abstract

In general, smoothing filters regularize functions by reducing differences between adjacent values. The smoothing filters, therefore, can regularize inverse solutions and produce more accurate subsurface structure when we apply it to full waveform inversion. If we apply a smoothing filter with a constant coefficient to subsurface image or velocity model, it will make layer interfaces and fault structures vague because it does not consider any information of geologic structures and variations of velocity. In this study, we develop a selective smoothing regularization technique, which adapts smoothing coefficients according to inversion iteration, to solve the weakness of smoothing regularization with a constant coefficient. First, we determine appropriate frequencies and analyze the corresponding wavenumber coverage. Then, we define effective maximum wavenumber as 99 percentile of wavenumber spectrum in order to choose smoothing coefficients which can effectively limit the wavenumber coverage. By adapting the chosen smoothing coefficients according to the iteration, we can implement multi-scale full waveform inversion while inverting multi-frequency components simultaneously. Through the successful inversion example on a salt model with high-contrast velocity structures, we can note that our method effectively regularizes the inverse solution. We also verify that our scheme is applicable to field data through the numerical example to the synthetic data containing random noise.

일반적으로 평활화 필터는 주변값들과의 차이를 감소시켜 함수를 정규화하는 역할을 한다. 따라서 완전파형역산에 평활화 필터를 적용하면 역산 해를 정규화 할 수 있으며 실제 지하 구조에 가까운 영상을 얻을 수 있다. 다만 단일 평활화 계수를 사용했을 때는 지층 형태나 속도변화에 관계없이 동일하게 평활화가 이루어지므로 지층간 경계면이나 단층 등의 구조가 불명확해지는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 단일 평활화 계수가 아닌 역산 반복 과정에 따라 선택적으로 평활화 계수를 조정하는 정규화 기법을 개발하였다. 먼저 파형역산에 적합한 탐사자료의 주파수 대역과 그에 대응하는 파수 범위를 분석하였다. 분석한 파수 범위에 적합한 평활화 계수를 선정하기 위해 평활화 필터의 파수 스펙트럼에서 99백분위수에 해당하는 파수를 유효최대파수로 결정하였다. 선정된 평활화 계수를 반복역산에 따라 다르게 적용하여 여러 주파수를 동시에 이용하는 멀티-스케일 완전파형역산을 구현하였다. 암염 모델과 같은 속도대비가 큰 지질구조에 대해 성공적인 역산결과를 얻음으로써 본 연구에서 개발한 평활화 계수 선택기법이 효과적인 정규화 과정을 구현한다는 것을 알 수 있었다. 또한 무작위 잡음이 더해진 인공합성 음원모음 자료에 대한 수치예제를 통해 현장 자료에 대한 적용 가능성도 확인할 수 있었다.

Keywords

References

  1. Aminzadeh, F., Burkhard, N., Nicoletis, L., Rocca, F., and Wyatt, K., 1994, SEG/EAGE 3-D modeling project: 2nd update, The Leading Edge, 13, 949-952. https://doi.org/10.1190/1.1437054
  2. Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion, Geophysics, 60, 1457-1473. https://doi.org/10.1190/1.1443880
  3. Costa, J. C., da Silva, F. J. C., Gomes, E. N. S., Schleicher, J., Melo, L. A., and Amazonas, D., 2008, Regularization in slope tomography, Geophysics, 73, VE39-VE47. https://doi.org/10.1190/1.2967499
  4. Guitton, A., Ayeni, G., and Diaz, E., 2012, Constrained fullwaveform inversion by model reparameterization, Geophysics, 77, R117-R127. https://doi.org/10.1190/geo2011-0196.1
  5. Hu, W., Abubaka, A., and Habashy, T. M., 2009, Simultaneous multifrequency inversion of full-waveform seismic data, Geophysics, 74, R1-R14. https://doi.org/10.1190/1.3273876
  6. Liu, Z., 1993, A Kirchhoff approach to seismic modeling and prestack depth migration, SEG Technical Program Expanded Abstracts, 888-891.
  7. Liu, Z., 1994, A velocity smoothing technique based on damped least squares, CWP-149, Colorado School of Mines.
  8. Menke, W., 1984, Geophysical data analysis: discrete inverse theory, Academic Press.
  9. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Int., 133, 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  10. Pratt, R. G., 1999, Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model, Geophysics, 64, 888-901. https://doi.org/10.1190/1.1444597
  11. Scales, J. A., Docherty, P., and Gersztenkorn, A., 1990, Regularization of nonlinear inverse problems: imaging the near-surface weathering layer, Inverse Problems, 6, 115-131. https://doi.org/10.1088/0266-5611/6/1/011
  12. Shin, C., Jang, S., and Min, D., 2001, Improved amplitude preservation for prestack depth migration by inverse scattering theory, Geophysical Prospecting, 49, 592-606. https://doi.org/10.1046/j.1365-2478.2001.00279.x
  13. Sirgue, L., and Pratt, R. G., 2003, Waveform inversion under realistic conditions: Migration of non-linearity, 73rd Annual International Meeting, SEG, Expanded Abstracts, 694-697.
  14. Sirgue, L., and Pratt, R. G., 2004, Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophysics, 69, 231-248. https://doi.org/10.1190/1.1649391
  15. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754
  16. Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation, Society for Industrial & Applied.
  17. van den Berg, P. M., van Broekhoven, A. L., and Abubakar, A., 1999, Extended contrast source inversion, Inverse Problems, 15, 1325-1344. https://doi.org/10.1088/0266-5611/15/5/315
  18. van den Berg, P. M., and Abubakar, A., 2001, Contrast source inversion method : State of art: Progress in Electromagnetic Research, 34, 189-218. https://doi.org/10.2528/PIER01061103