DOI QR코드

DOI QR Code

Application of Displacement-Vector Objective Function for Frequency-domain Elastic Full Waveform Inversion

주파수 영역 탄성파 완전파형역산을 위한 변위벡터 목적함수의 적용

  • Kwak, Sang-Min (Department of Energy Systems Engineering, Seoul National University) ;
  • Pyun, Suk-Joon (Department of Energy Resources Engineering, Inha University) ;
  • Min, Dong-Joo (Department of Energy Systems Engineering, Seoul National University)
  • 곽상민 (서울대학교 에너지시스템공학부) ;
  • 편석준 (인하대학교 에너지자원공학과) ;
  • 민동주 (서울대학교 에너지시스템공학부)
  • Received : 2011.06.28
  • Accepted : 2011.07.22
  • Published : 2011.08.31

Abstract

In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.

탄성파동방정식에서는 변위가 수직 및 수평방향으로 정의된다. 실제 탐사에서는 수직변위와 수평변위를 모두 측정할 수 있기 때문에 이를 이용하여 방향성을 갖는 변위벡터를 구성할 수 있다. 본 연구에서는 이러한 변위벡터의 크기를 목적함수로 이용하는 주파수 영역 탄성파 파형역산 기법을 제안하고자 한다. 변위벡터 목적함수는 주파수 영역 파형역산 알고리듬에 적용할 경우 기존의 역전파 알고리듬과 동일한 방식으로 역산을 수행할 수 있다. 변위벡터 목적함수를 이용하여 Marmousi 모델과 SEG/EAGE 암염 모델의 합성탄성파 자료를 역산한 결과, 기존의 역산기법에 비해 RMS 오차가 안정적으로 감소하였다. 특히, Marmousi 모델의 밀도와 SEG/EAGE 암염 모델의 암염 하부의 저속도층을 실제 모델에 더 가깝게 구현할 수 있었다. 변위벡터의 크기를 목적함수로 사용할 경우 경사방향이 수치적으로 불안정한 형태로 정의되므로 이를 안정화시키기 위한 추가적인 연구가 필요할 것이다. 또한 본 논문에서 제안한 변위벡터 목적함수를 이용한 파형역산을 수행하기 위해서는 다성분 탐사자료 획득이 필수적이므로 육상탐사에서의 다성분 탐사나 해저면 다성분탐사(OBC, Ocean Bottom Cable) 등의 연구와 병행되어야 할 것이다.

Keywords

References

  1. Bae, H., Shin, C., Cha, Y. H., Choi, Y., and Min, D.-J., 2010, 2D acoustic-elastic coupled waveform inversion in the Laplace domain, Geophys. Prospect., 58, 997-1010.
  2. Brossier, R., Operto, S., and Virieux, J., 2009, Seismic imaging of complex onshore structures by 2D elastic frequencydomain full-waveform inversion, Geophysics, 74, WCC63-WCC76.
  3. Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion, Geophysics, 60, 1457-1473. https://doi.org/10.1190/1.1443880
  4. Choi, Y., Shin, C., Min, D.-J., and Ha, T., 2005, Efficient calculation of the steepest descent direction for sourceindependent seismic waveform inversion: An amplitude approach, J. Comput. Phys., 208, 455-468. https://doi.org/10.1016/j.jcp.2004.09.019
  5. Choi, Y., Min, D.-J., and Shin, C., 2008, Frequency-domain elastic full waveform inversion using the new pseudo-Hessian matrix: Experience of elastic Marmousi-2 synthetic data, Bull. Seismol. Soc. Am., 98, 2402-2415. https://doi.org/10.1785/0120070179
  6. Chung, W., Shin, C., and Pyun, S., 2010, 2D elastic waveform inversion in the Laplace domain, Bull. Seismol. Soc. Am., 100, 3239-3249. https://doi.org/10.1785/0120100061
  7. Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am., 67, 1529-1540.
  8. Gauthier, O., Virieux, J., and Tarantola, A., 1986, Twodimensional nonlinear inversion of seismic waveforms: Numerical results, Geophysics, 51, 1387-1403. https://doi.org/10.1190/1.1442188
  9. Guitton, A., and Symes, W. W., 2003, Robust inversion of seismic data using the Huber norm, Geophysics, 68, 1310-1319. https://doi.org/10.1190/1.1598124
  10. Ha, T., Chung, W., and Shin, C., 2009, Waveform inversion using a back-propagation algorithm and a Huber function norm, Geophysics, 74, R15-R24. https://doi.org/10.1190/1.3112572
  11. Ha, W., Pyun, S., Yoo, J., and Shin, C., 2010, Acoustic full waveform inversion of synthetic land and marine data in the Laplace domain, Geophys. Prospect., 58, 1033-1047.
  12. Kim, M., Choi, Y., Cha, Y. H., and Shin, C., 2009, 2-D frequency-domain waveform inversion of coupled acousticelastic media with an irregular interface, Pure Appl. Geophys., 166, 1967-1985. https://doi.org/10.1007/s00024-009-0528-8
  13. Kolb, P., Collino, F., and Lailly, P., 1986, Pre-stack inversion of a 1-D medium, Proc. IEEE, 74, 498-508. https://doi.org/10.1109/PROC.1986.13490
  14. Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations, Conference on Inverse Scattering: Theory and Application, SIAM, 206-220.
  15. Min, D.-J., and Shin, C., 2006, Refraction tomography using a waveform-inversion back-propagation technique, Geophysics, 71, R21-R30. https://doi.org/10.1190/1.2194522
  16. Mora, P., 1987, Nonlinear two-dimensional elastic inversion of multioffset seismic data, Geophysics, 52, 1211-1228. https://doi.org/10.1190/1.1442384
  17. Pratt, R. G., Shin, C., and Hicks, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophys. J. Int., 133, 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x
  18. Pyun, S., Shin, C., and Bednar, J. B., 2007, Comparison of waveform inversion, part3: amplitude approach, Geophys. Prospect., 55, 477-485. https://doi.org/10.1111/j.1365-2478.2007.00619.x
  19. Pyun, S., Son, W., and Shin, C., 2009, Frequency-domain waveform inversion using an L1-norm objective function, Expl. Geophys., 40, 227-232. https://doi.org/10.1071/EG08103
  20. Pyun, S., Son, W., and Shin, C., 2011, 3D acoustic waveform inversion in the Laplace domain using an iterative solver, Geophys. Prospect., 59, 386-399. https://doi.org/10.1111/j.1365-2478.2010.00927.x
  21. Sears, T. J., Barton, P. J., and Singh, S. C., 2010, Elastic full waveform inversion of multicomponent ocean-bottom cable seismic data: Application to Alba field, U.K. North Sea, Geophysics, 75, R109-R119. https://doi.org/10.1190/1.3484097
  22. Shin, C., and Cha, Y. H., 2008, Waveform inversion in the Laplace domain, Geophys. J. Int., 173, 922-931. https://doi.org/10.1111/j.1365-246X.2008.03768.x
  23. Shin, C., and Cha, Y. H., 2009, Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int., 177, 1067-1079. https://doi.org/10.1111/j.1365-246X.2009.04102.x
  24. Shin, C., and Min, D.-J., 2006, Waveform inversion using a logarithmic wavefield, Geophysics, 71, R31-R42. https://doi.org/10.1190/1.2194523
  25. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266. https://doi.org/10.1190/1.1441754