• Title/Summary/Keyword: Multi-core scheduling

Search Result 42, Processing Time 0.02 seconds

Performance Analysis of Group Scheduling for Core Nodes in Optical Burst Switching Networks (광 버스트 스위칭 네트워크의 코어 노드를 위한 그룹 스케줄링 성능 분석)

  • 신종덕;이재명;김형석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8B
    • /
    • pp.721-729
    • /
    • 2004
  • In this paper, we applied a group scheduling algorithm to core nodes in an optical burst switching (OBS) network and measured its performance by simulation. For the case of core nodes with multi-channel input/output ports, performance of the group scheduling has been compared to that of the immediate scheduling. Since the group scheduling has a characteristic of scheduling a group of bursts simultaneously in a time window using information collected from corresponding burst header packets arrived earlier to a core node, simulation results show that the group scheduling outperforms the immediate scheduling in terms of both burst loss probability and channel utilization and the difference gets larger as the load increases. Another node configuration in which wavelength converters are equipped at the output ports has also been considered. In this case, even though both performance metrics of the group scheduling are almost the same as those of the immediate scheduling in the offered load range between 0.1 and 0.9, the group scheduling has lower wavelength conversion rate than the immediate scheduling by at least a factor of seven. This fact leads us to the conclusion that the group scheduling makes it possible to implement more economical OBS core nodes.

Dynamic Scheduling of Network Processes for Multi-Core Systems (멀티 코어 시스템에서 통신 프로세스의 동적 스케줄링)

  • Jang, Hye-Churn;Jin, Hyun-Wook;Kim, Hag-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.968-972
    • /
    • 2009
  • The multi-core processors are being widely exploited by many high-end systems. With significant advances in processor architecture, the network band-width required on the high-end systems is increasing drastically. It is therefore highly desirable to manage multiple cores efficiently to achieve high network band-width with minimum resource requirements. Modern operating systems, however, still have significant design and optimization space to leverage the network performance over multi-core systems. In this paper, we suggest a novel networking process scheduling scheme, which decides the best processor affinity of networking processes based on the processor cache layout, communication intensiveness, and processor loads. The experimental results show that the scheduling scheme implemented in the Linux kernel can improve the network bandwidth and the effectiveness of processor utilization by 20% and 59%, respectively.

Multi-core Scalable Fair I/O Scheduling for Multi-queue SSDs (멀티큐 SSD를 위해 멀티코어 확장성을 제공하는 공정한 입출력 스케줄링)

  • Cho, Minjung;Kang, Hyeongseok;Kim, Kanghee
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.469-475
    • /
    • 2017
  • The emerging NVMe-based multi-queue SSDs provides a high bandwidth by parallel I/O, i.e., each core performs I/O through its dedicated queue in parallel with other cores. To provide a bandwidth share for each application with I/O, a fair-share scheduler that provides a bandwidth share to each core is required. In this study, we proposed a multi-core scalable fair-queuing algorithm for multi-queue SSDs. The algorithm adopts randomization to minimize the inter-core synchronization overheads and provides a weight-proportional bandwidth share to each core. The results of our experiments indicated that the proposed algorithm gives accurate bandwidth partitioning and outperforms the existing FlashFQ scheduler, regardless of the number of cores for a Linux kernel with block-mq.

VDI deployment and performance analysys for multi-core-based applications (멀티코어 기반 어플리케이션 운용을 위한 데스크탑 가상화 구성 및 성능 분석)

  • Park, Junyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1432-1440
    • /
    • 2022
  • Recently, as Virtual Desktop Infrastructure(VDI) is widely used not only in office work environments but also in workloads that use high-spec multi-core-based applications, the requirements for real-time and stability of VDI are increasing. Accordingly, the display protocol used for remote access in VDI and performance optimization of virtual machines have also become more important. In this paper, we propose two ways to configure desktop virtualization for multi-core-based application operation. First, we propose a codec configuration of a display protocol with optimal performance in a high load situation due to multi-processing. Second, we propose a virtual CPU scheduling optimization method to reduce scheduling delay in case of CPU contention between virtual machines. As a result of the test, it was confirmed that the H.264 codec of Blast Extreme showed the best and stable frame, and the scheduling performance of the virtual CPU was improved through scheduling optimization.

Real-Time Power-Saving Scheduling Based on Genetic Algorithms in Multi-core Hybrid Memory Environments (멀티코어 이기종메모리 환경에서의 유전 알고리즘 기반 실시간 전력 절감 스케줄링)

  • Yoo, Suhyeon;Jo, Yewon;Cho, Kyung-Woon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.135-140
    • /
    • 2020
  • Recently, due to the rapid diffusion of intelligent systems and IoT technologies, power saving techniques in real-time embedded systems has become important. In this paper, we propose P-GA (Parallel Genetic Algorithm), a scheduling algorithm aims at reducing the power consumption of real-time systems in multi-core hybrid memory environments. P-GA improves the Proportional-Fairness (PF) algorithm devised for multi-core environments by combining the dynamic voltage/frequency scaling of the processor with the nonvolatile memory technologies. Specifically, P-GA applies genetic algorithms for optimizing the voltage and frequency modes of processors and the memory types, thereby minimizing the power consumptions of the task set. Simulation experiments show that the power consumption of P-GA is reduced by 2.85 times compared to the conventional schemes.

SVM-based Energy-Efficient scheduling on Heterogeneous Multi-Core Mobile Devices (비대칭 멀티코어 모바일 단말에서 SVM 기반 저전력 스케줄링 기법)

  • Min-Ho, Han;Young-Bae, Ko;Sung-Hwa, Lim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.69-75
    • /
    • 2022
  • We propose energy-efficient scheduling considering real-time constraints and energy efficiency in smart mobile with heterogeneous multi-core structure. Recently, high-performance applications such as VR, AR, and 3D game require real-time and high-level processings. The big.LITTLE architecture is applied to smart mobiles devices for high performance and high energy efficiency. However, there is a problem that the energy saving effect is reduced because LITTLE cores are not properly utilized. This paper proposes a heterogeneous multi-core assignment technique that improves real-time performance and high energy efficiency with big.LITTLE architecture. Our proposed method optimizes the energy consumption and the execution time by predicting the actual task execution time using SVM (Support Vector Machine). Experiments on an off-the-shelf smartphone show that the proposed method reduces energy consumption while ensuring the similar execution time to legacy schemes.

Design and Implementation of a Linux-based Message Processor to Minimize the Response-time Delay of Non-real-time Messages in Multi-core Environments (멀티코어 환경에서 비실시간 메시지의 응답시간 지연을 최소화하는 리눅스 기반 메시지 처리기의 설계 및 구현)

  • Wang, Sangho;Park, Younghun;Park, Sungyong;Kim, Seungchun;Kim, Cheolhoe;Kim, Sangjun;Jin, Cheol
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.115-123
    • /
    • 2017
  • A message processor is server software that receives non-realtime messages as well as realtime messages from clients that need to be processed within a deadline. With the recent advances of micro-processor technologies and Linux, the message processor is often implemented in Linux-based multi-core servers and it is important to use cores efficiently to maximize the performance of system in multi-core environments. Numerous research efforts on a real-time scheduler for the efficient utilization of the multi-core environments have been conducted. Typically, though, they have been conducted theoretically or via simulation, making a subsequent real-system application difficult. Moreover, many Linux-based real-time schedulers can only be used in a specific Linux version, or the Linux source code needs to be modified. This paper presents the design of a Linux-based message processor for multi-core environments that maps the threads to the cores at user level. The message processor is implemented through a modification of the traditional RM algorithm that consolidates the real-time messages into certain cores using a first-fit-based bin-packing algorithm; this minimizes the response-time delay of the non-real-time messages, while guaranteeing the violation rate of the real-time messages. To compare the performances, the message processor was implemented using the two multi-core-scheduling algorithms GSN-EDF and P-FP, which are provided by the LITMUS framework. The benchmarking results show that the response-time delay of non-real-time messages in the proposed system was improved up to a maximum of 17% to 18%.

Applying scheduling techniques for improving the performance of network equipment network subsystem (네트워크 장비 성능 향상을 위한 네트워크 서브시스템 스케줄링 기법 적용)

  • Bae, Byoungmin;Kim, MinJung;Lee, GowangLo;Jung, YungJoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.65-67
    • /
    • 2013
  • The recent high-performance network equipment is required, and also require high network bandwidth utilization. It is a trend to develop increasingly using multi-core processors for high-performance network servers. Propose a method to improve the performance of the network sub-system, considering the characteristics of multi-core as a way to improve these high-performance and high network throughput. In this paper, we confirm through experiments on how to improve the communication performance, optimize performance and take full advantage of multi-core by Network communication process to improve the performance of the multi-core processor architecture, the process of concentration, the overhead for each core, based on network traffic according to the interrupt affinity in this process to determine the optimal core to give. The experiments were implemented in the Linux kernel, and experiments to improve the network throughput up to 30%, bringing reduces the Linux communication process to improve the performance of the processor overhead of up to 10%.

  • PDF

Joint Scheduling and Rate Optimization in Multi-channel Multi-radio Wireless Networks with Contention-based MAC

  • Bui, Dang Quang;Choi, Myeong-Gil;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1716-1721
    • /
    • 2008
  • Currently, Wireless Networks have some nice characteristics such as multi-hop, multi-channel, multi-radio, etc but these kinds of resources are not fully used. The most difficulty to solve this issue is to solve mixed integer optimization. This paper proposes a method to solve a class of mixed integer optimization for wireless networks by using AMPL modeling language with CPLEX solver. The result of method is scheduling and congestion control in multi-channel multi-radio wireless networks.

  • PDF

Real-time Scheduling on Heterogeneous Multi-core Architecture for Energy Conservation of Smart Mobile Devices (스마트 모바일 장치의 에너지 보존성을 높이기 위한 비대칭 멀티 코어 기반 실시간 태스크 스케쥴링)

  • Lim, Sung-Hwa
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1219-1224
    • /
    • 2018
  • Nowaday, smart mobile devices on Internet of Things are required to process and deliver greate amount of data in real-time. Therefore, heterogeneous mult-core architecture such the big.LITTLE core architecture, which shows high energy conservation while guaranteeing high performance, are widely employed on up to date smart mobile devices. The LITTLE cores should be highly utilized to gain higher energy conservation because LITTLE cores have much higher energy efficiency than big cores. In this paper, we propose a core selection algorithm, which tries to firstly assign a real-time task on a LITTLE core rather a big core while the task can be finished within its own deadline. We also perform simulation as performance evaluation to show that our proposed algorithm shows higher energy conservation while guaranteeing the required performance.