• Title/Summary/Keyword: Multi-commodity flow

Search Result 9, Processing Time 0.028 seconds

Centralized Channel Allocation Schemes for Incomplete Medium Sharing Systems with General Channel Access Constraints (불완전매체공유 시스템을 위한 집중방식 채널할당기법)

  • Kim Dae-Woo;Lee Byoung-Seok;Choe Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.183-198
    • /
    • 2006
  • We define the incomplete medium sharing system as a multi-channel shared medium communication system where constraints are imposed to the set of channels that may be allocated to some transmitter-receiver node pairs. To derive a centralized MAC scheme of a incomplete medium sharing system, we address the problem of optimal channel allocation The optimal channel allocation problem is then translated into a max-flow problem in a multi-commodity flow graph, and it is shown that the optimal solution can then be obtained by solving a linear programming problem. In addition, two suboptimal channel allocation schemes are proposed to bring down the computational complexity to a practical/feasible level; (1) one is a modified iSLIP channel allocation scheme, (2) the other is sequential channel allocation scheme. From the results of a extensive set of numerical experiments, it is found that the suboptimal schemes evaluate channel utilization close to that of the optimal schemes while requiring much less amount of computation than the optimal scheme. In particular, the sequential channel allocation scheme is shown to achieve higher channel utilization with less computational complexity than . the modified iSLIP channel allocation scheme.

Yard Planning Considering the Load Profile of Resources in Container Terminals (컨테이너 터미널의 자원 부하를 고려한 최적 장치계획 모형)

  • Won, Seung-Hwan;Kim, Kap-Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • The main activities of container terminals are to load container freights to vessels, discharge them from vessels, and store them in the storage yard. Container terminals make many operational plans to execute these functions effectively. If the plans do not consider enough the loads of related resources, they may have low actualities. This study discusses the optimal yard planning model which considers various resources, such as the storage yard, yard cranes, internal vehicles, and travel lanes, in container terminals. The model determines the groups and amounts of containers which are stored in each storage block by using the resource profile. The yard planning problem is represented to the multi-commodity minimal cost flow problem and is formulated to the linear programming model. In order to explain the application of the mathematical model, the numerical examples are presented. Additionally, the relationship between the average load ratio and the relocation ratio is discussed.

Finding Optimal Small Networks by Mathematical Programming Models (수리계획 모형을 이용한 최적의 작은 네트워크 찾기)

  • Choi, Byung-Joo;Lee, Hee-Sang
    • IE interfaces
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • In this paper we study the Minimum Edge Addition Problem(MEAP) to decrease the diameter of a graph. MEAP can be used for improving the serviceability of telecommunication networks with a minimum investment. MEAP is an NP-hard optimization problem. We present two mathematical programming models : One is a multi-commodity flow formulation and the other is a path partition formulation. We propose a branch-and-price algorithm to solve the path partition formulation to the optimality. We develop a polynomial time column generation sub-routine conserving the mathematical structure of a sub problem for the path partition formulation. Computational experiments show that the path partition formulation is better than the multi-commodity flow formulation. The branch-and-price algorithm can find the optimal solutions for the immediate size graphs within reasonable time.

Augmenting Path Algorithm for Routing Telephone Calls Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.77-81
    • /
    • 2016
  • This paper deals with the optimization problem that decides the routing of connection between multi-source and multi-sink. For this problem, there is only in used the mathematical approach as linear programming (LP) software package and has been unknown the polynomial time algorithm. In this paper we suggest the heuristic algorithm with $O(mn)^2$ time complexity to solve the optimal solution for this problem. This paper suggests the simple method that assigns the possible call flow quantity to augmenting path of ($s_i,t_i$) city pair satisfied with demand of ($s_i,t_i$). The proposed algorithm can be get the same optimal solution as LP for experimental data.

Successive Max-min Connection-Ratio Preoblem:Routing with Fairness and Efficiency in Circuit Telecommunication Networks (연속적인 최대-최소 연결비율 문제: 회선망에서의 공정성 및 효율성을 보장하는 경로설정)

  • 박구현;우재현
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.13-29
    • /
    • 1997
  • This paper considers a new routing problem, successive max-min connection ratio problem (SMCRP), arised in circuit telecommunication networks such as SONET and WDM optical transport network. An optimization model for SMCRP is established based on link-flow formulation. It's first optimization process is an integral version of maximum concurrent flow problem. Integer condition does not give the same connection-ratio of each node-pair at an optimal solution any more. It is also an integral multi-commodity flow problem with fairness restriction. In order to guarantee fairness to every node-pair the minimum of connection ratios to demand is maximized. NP- hardness of SMCRP is proved and a heuristic algorithm with polynomial-time bound is developed for the problem. Augmenting path and rerouting flow are used for the algorithm. The heuristic algorithm is implemented and tested for networks of different sizes. The results are compared with those given by GAMS/OSL, a popular commercial solver for integer programming problem.n among ferrite-pearlite matrix, the increase in spheroidal ratio with increasing fatigue limitation, 90% had the highest, 14.3% increasing more then 70%, distribution range of fatigue.ife was small in same stress level. (2) $\sqrt{area}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of $\sqrt{area}_{max}$ may be used as a guideline for the control of inclusion size in the steelmaking.

  • PDF

Freight and Fleet Optimization Models under CVO Environment (CVO 환경을 고려한 차량 및 화물 운송 최적 모델)

  • Choe Gyeong-Hyeon;Pyeon Je-Beom;Gwak Ho-Man
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.209-215
    • /
    • 2002
  • In this paper, we propose a freight and fleet optimization model under CVO environment. The model is a kind of multi commodity network flow model based on Vehicle Routing Problem(VRP) and Vehicle Scheduling Problem(VSP), and considering operations and purposes of CVO. The main purpose of CVO is the freight and fleet management to reduce logistics cost and to Improve in vehicle safety. Thus, the objective of this model is to minimize routing cost of all the vehicle and to find the location of commodities which have origin and destination. We also present some computing test results.

  • PDF

An Efficient Low-Power Binding Algorithm in High-Level Synthesis (저전력 소모를 위한 상위 수준의 효과적인 바인딩 알고리즘)

  • 최윤서;김태환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.19-21
    • /
    • 2002
  • 우리는 저전력 소모를 위한 상위 수준(high-level)에서의 효과적인 바인딩(binding) 알고리즘을 제안한다. 이전 연구들에 의해서 저전력 소모를 위한 몇몇의 바인딩 알고리즘들은 멀티-코모도티 플로우(multi-commodity flow) 문제로 모델링 될 수 있음이 밝혀졌다. 그러나 멀티-코모도티 플로우 문제는 NP-hard이기 때문에 진은 크기의 설계에만 적용될 수 있다. 이러한 제약을 극복하기 위해 우리는 네트워크 상의 플로우를 잘 이용해서 효과적으로 빠른 시간 안에 최적에 가까운 결과를 낼 수 있는 방법을 제안하여 크기가 큰 설계에도 적용할 수 있도록 한다. 이를 위해 우리는 첫번째 단계에서는 네트워크에서 최소 비용의 최대 플로우 (maximum f1ow -minimum cost)를 구하는 방법을 부분적으로 이용해서 유효한 결과를 구하고 두 번째 단계에서는 이를 반복적으로 개선시켜나가는 2 단계의 알고리즘을 제안한다. 벤치마크를 이용한 실험 결과는 제안된 알고리즘이 실제적인 설계에 적용되었을때, 충분히 빠른 시간 안에 최적에 가까운 결과를 생성함을 보여준다.

  • PDF

An empirical study on the material distribution decision making

  • Ko, Je-Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.2
    • /
    • pp.355-361
    • /
    • 2010
  • This paper addresses a mathematical approach to decision making in a real-world material distribution situation. The problem is characterized by a low-volume and highly-varied mix of products, therefore there is a lot of material movement between the facilities. This study focuses especially on the transportation scheduler with a tool that can be used to quantitatively analyze the volume of material moved, the type of truck to be used, production schedules, and due dates. In this research, we have developed a mixed integer programming problem using the minimum cost, multiperiod, multi-commodity network flow approach that minimizes the overall material movement costs. The results suggest that the optimization approach provides a set of feasible solution routes with the objective of reducing the overall fleet cost.

Additional Freight Train Schedule Generation Model (화물열차 증편일정 결정모형)

  • Kim, Young-Hoon;Rim, Suk-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3851-3857
    • /
    • 2014
  • Shippers' requests of freight trains vary with time, but generating an additional schedule of freight trains is not easy due to many considerations, such as the line capacity, operation rules, and conflicts with existing trains. On the other hand, an additional freight train schedule has been continuously requested and manually processed by domestic train operation companies using empirical method, which is time consuming. This paper proposes a model to determine the additional freight train schedule that assesses the feasibility of the added freight trains, and generates as many additional schedules as possible, while minimizing the delay of the existing schedules. The problem is presented using time-space network, modeled as multi-commodity flow problem, and solved using the column generation method. Three levels of experiment were conducted to show validity of the proposed model in the computation time.