• Title/Summary/Keyword: Multi-coating

Search Result 289, Processing Time 0.028 seconds

Fabrication of Thin Film Dielectric by Hybrid Sol (Hybrid Sol을 이용한 박막 유전체 제작)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.185-191
    • /
    • 2007
  • The purpose of this study is to evaluate the thin fihn dielectric made of hybrid sol, which consist of barium titanate powder, polymeric sol and other polymers. This sol will be used dielectric applied to small, thin electric passive components such as MLCC(Multi Layer Ceramic Condenser), resister, inductor. This sol is composed of mixed fine barium titanate powder and polymeric sol including Ba, Ti-precursor, solvent, chelating agent, chemical reaction catalyst, the additive sols to improve fired densification and temperature reliability. First at all, we mixed hybrid sol to be dispersed and be stabilized by ball milling for 24hrs. By spin coating method, we makes thin film dielectric on the convectional green sheet for MLCC. After heat treatments, we analyzes the structure morphology, physical, electrical properties and X5R Temperature properties.

Design of RCS Reduction Structure of Integrated Mast on the Destroyer (구축함에 탑재되는 통합마스트의 RCS 저감 구조 설계)

  • Lee, Jong-Hak;Ra, Young-Eun;Lee, Keon-Min;Jang, Ju-Su
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.238-242
    • /
    • 2020
  • This paper presents a technique using a multilayered dielectric coating to reduce the radar cross section (RCS) value of an integrated mast mounted in a destroyer. The proposed multilayer structure has the advantage of being easy to fabricate because the dielectric constant is defined so that a general dielectric that does not contain a magnetic component that requires high dielectric constant or is frequently used for blocking electromagnetic wave absorption can be used. After applying the proposed multi-layer dielectric structure to the integrated mast shape, the simulation results show that the RCS reduction performance is 10.9dB at 6GHz, 11.95dB at 12GHz, and 11.63dB at 18GHz compared to the structure without the multilayer structure.

Study of Multi Anti-Reflection Coating Thin Film of Ferrule Facet Manufacture and Characteristics (광커넥터 패룰 단면의 다층 무반사 코팅 박막 제작 및 특성에 관한 연구)

  • Ki, Hyun-Chul;Yang, Mung-Hark;Kim, Sun-Hoon;Kim, Sang-Taek;Park, Kyung-Hee;Hong, Kyung-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.408-409
    • /
    • 2007
  • Ferrule function have connect Optical Communication Cable. But Ferrule have important role that is decided transmission efficiency and information quality. Key-point of detailed drawing of ferrule is Anti-Reflection. In the study Broadband Anti-Reflection coating Film was design for ferrule of optical connector and deposited in low temperature by Ion-Assisted Deposition system. Optical thin film materials($Ta_2O_5$, $SiO_2$) were manufactured Index and Film thickness. $Ta_2O_5$ index is 2.123 ~ 2.125 and $SiO_2$ is 1.44 ~ 1.442. Reflection Loss of film deposited on Ferrule is 30.1[dB].

  • PDF

Optimization of Porous Silicon Reflectance for Multicrystalline Silicon Solar Cells (다공성 실리콘 반사방지막의 최적 반사율을 적용한 다결정 실리콘 태양전지)

  • Kwon, J.H.;Kim, D.S.;Lee, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.146-149
    • /
    • 2004
  • Porous silicon(PS) as an excellent light diffuser can be used as an antireflection layer without other antireflection coating(ARC) materials. PS layers were obtained by electrochemical etching(ECE) anodization of silicon wafers in hydrofluoric acid/ethanol/de-ionized(DI) water solution($HF/EtOH/H_2O$). This technique is based on the selective removal of Si atoms from the sample surface forming a layer of PS with adjustable optical, electrical, and mechanical properties. A PS layer with optimal ARC characteristics was obtained in charge density (Q) of 5.2 $C/cm^2$. The weighted reflectance is reduced from 33 % to 4 % in the wavelength between 400 and 1000 nm. The weighted reflectance with optimized PS layers is much less than that obtained with a commercial SiNx ARC on a potassium hydroxide(KOH) pre-textured multi-crystalline silicon(mc-Si) surface.

  • PDF

Phase-Field Modelling of Zinc Dendrite Growth in ZnAlMg Coatings

  • Mikel Bengoetxea Aristondo;Kais Ammar;Samuel Forest;Vincent Maurel;Houssem Eddine Chaieb;Jean-Michel Mataigne
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.93-103
    • /
    • 2024
  • In the present work, a phase-field model for dendritic solidification is applied to hot-dip ZnAlMg coatings to elucidate the morphology of zinc dendrites and the solute segregation leading to the formation of eutectics. These aspects define the microstructure that conditions the corrosion resistance and the mechanical behaviour of the coating. Along with modelling phase transformation and solute diffusion, the implemented model is partially coupled with the tracking of crystal orientation in solid grains, thus allowing the effects of surface tension anisotropy to be considered in multi-dendrite simulations. For this purpose, the composition of a hot-dip ZnAlMg coating is assimilated to a dilute pseudo-binary system. 1D and 2D simulations of isothermal solidification are performed in a finite element solver by introducing nuclei as initial conditions. The results are qualitatively consistent with existing analytical solutions for growth velocity and concentration profiles, but the spatial domain of the simulations is limited by the required mesh refinement.

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.

Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착)

  • Yun, Young-Hoon;Chung, Hoon-Taek;Cha, In-Su;Choi, Jeong-Sik;Kim, Dong-Mook;Jung, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis (다층 소결메쉬 확산체를 이용한 알칼라인 수전해 셀)

  • YEOM, SANG HO;YUN, YOUNG HWA;CHOI, SEUNGWOOK;KWON, JIHEE;LEE, SECHAN;LEE, JAE HUN;LEE, CHANGSOO;KIM, MINJOONG;KIM, SANG-KYUNG;UM, SUKKEE;KIM, CHANG-HEE;CHO, WON CHUL;CHO, HYUN-SEOK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.442-454
    • /
    • 2021
  • The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.

Application of Computational Fluid Dynamics to Development of Combustion Devices for Liquid-Propellant Rocket Engines (액체추진제 로켓 엔진 연소장치 개발에 있어서의 전산유체역학 응용)

  • Joh, Miok;Kim, Seong-Ku;Han, Sang Hoon;Choi, Hwan Seok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.150-159
    • /
    • 2014
  • This study provides a brief introduction to application of the computational fluid dynamics to domestic development of combustion devices for liquid-propellant rocket engines. Multi-dimensional flow analysis can provide information on the flow uniformity and pressure loss inside the propellent manifold, from which the design selection can be performed during the conceptual design phase. Multi-disciplinary performance analysis of the thurst chamber can also provide key information on performance-related design issues such as fuel film cooling and thermal barrier coating conditions. Further efforts should be made to develop numerical models to resolve the mixing and combustion characteristics of LOX/kerosene near the injection face plate.

A Study on New Twist-Diamond Wire Characteristics for Improving Processing Performance (트위스트 다이아몬드 와이어의 성능향상을 위한 특성평가에 관한 연구)

  • Park, Chang-Yong;Kweon, Hyun-Kyu;Peng, Bo;Jung, Bong-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.26-33
    • /
    • 2016
  • In this study, a new method to develop a fixed diamond wire for silicon wafer machining by the multi-wire cutting method was developed. The new twist diamond wire has improved performance with high breaking strength and chip flutes structure. According to these characteristics, the new twist diamond wire can be used in the higher speed multi-wire cutting process with a long lifetime. Except the design of the new structure, the twist diamond wire is coating by electroless-electroplating process. It is good for reducing breakage and the falling-off of diamond grains. Based on the silicon material removal mechanism and performance of the wire-cutting machine, the optimal processing condition of the new twist diamond wire has been derived via mathematical analysis. At last, through the tensile testing and the machining experiments, the performance of the twist diamond wire has been obtained to achieve the development goals and exceed the single diamond wire.