• Title/Summary/Keyword: Multi-channel Communication

Search Result 804, Processing Time 0.033 seconds

Blind Multi-user Estimation for Asynchronous DS-CDMA Systems (비동기 DS-CDMA 시스템에서의 블라인드 다중사용자 채널 추정 기법)

  • 정형성;성하종;이충용;유대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.939-946
    • /
    • 1999
  • A new blind multi-user channel estimation algorithm for the mobile communication systems is proposed. The proposed algorithm exploits the second-order statistics of a received signal and the subspace concept, and requires much less computational complexity than the existing algorithms. The algorithm can reduce the comptational load by estimating the physical channels excluding the spreading codes. We formulate the algorithm using the multi-channel model for asynchronous DS-CDMA systems and perform numerical experiments to evaluate the performance of the proposed algorithm.

  • PDF

16-QAM OFDM-Based K-Band LoS MIMO Communication System with Alignment Mismatch Compensation

  • Kim, Bong-Su;Kim, Kwang-Seon;Kang, Min-Soo;Byun, Woo-Jin;Song, Myung-Sun;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.535-545
    • /
    • 2017
  • This paper presents a novel K-band (18 GHz) 16-quadrature amplitude modulation (16-QAM) orthogonal frequency-division multiplexing (OFDM)-based $2{\times}2$ line-of-sight multi-input multi-output communication system. The system can deliver 356 Mbps on a 56 MHz channel. Alignment mismatches, such as amplitude and/or phase mismatches, between the transmitter and receiver antennas were examined through hardware experiments. Hardware experimental results revealed that amplitude mismatch is related to antenna size, antenna beam width, and link distance. The proposed system employs an alignment mismatch compensation method. The open-loop architecture of the proposed compensation method is simple and enables facile construction of communication systems. In a digital modem, 16-QAM OFDM with a 512-point fast Fourier transform and (255, 239) Reed-Solomon forward error correction codecs is used. Experimental results show that a bit error rate of $10^{-5}$ is achieved at a signal-to-noise ratio of approximately 18.0 dB.

OFDM Modulation Transmission Characteristic of Acoustic Signal on Power Line Channel (전력선 채널에서 음향신호의 OFDM 변조 전송 특성)

  • Heo, Yoon-Seok
    • The Journal of Information Technology
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • This paper is about power line communication(PLC) over the low power voltage grid. The main advantage with power line communication is the use of an existing infrastructure. The PLC channel can be modeled as having multi-path propagation with frequency-selective fading, typical power lines exhibit signal attenuation increasing with length and frequency. OFDM(Orthogonal Frequency Division Multiplexing) is a modulation technique where multiple low data rate carriers are combined by a transmitter to form a composite high data rate transmission. The performance in consideration of the multi-path(echoes) powerline scheme is analyzed and verified by computer simulation.

  • PDF

Establishing Best Power Transmission Path using Receiver Based on the Received Signal Strength

  • Eom, Jeongsook;Son, Heedong;Park, Yongwan
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.15-23
    • /
    • 2017
  • Wireless power transmission (WPT) for wireless charging is currently attracting much attention as a promising approach to miniaturize batteries and increase the maximum total range of an electric vehicle. The main advantage of the laser power beam (LPB) approach is its high power transmission efficiency (PTE) over long distance. In this paper, we present the design of a laser power beam based WPT system, which has a best WPT channel selection technique at the receiver end when multiple power transmitters and single power receiver are operated simultaneously. The transmitters send their transmission channel information via optically modulated laser pulses. The receiver uses the received signal strength indicator and digitized data to choose an optimum power transmission path. We modeled a vertical multi-junction photovoltaic cell array, and conducted an experiment and simulation to test the feasibility of this system. From the experimental result, the standard deviation between the mathematical model and the measured values of normalized energy distribution is 0.0052. The error between the mathematical model and measured values are acceptable, thus the validity of the model is verified.

Analysis of Highly Directional Sonar Communication System (고지향 소나 시스템 통신 성능분석)

  • Lee, Jaeil;Lee, Chong Hyun;Lee, Seung Wook;Shin, Jungchae;Jung, Jin Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.3-9
    • /
    • 2012
  • In this paper, we present novel analysis results of sonar communication using parametric array. We consider transducer diameter, primary frequency, difference frequency and acoustic power as analysis parameters of communication performance. We calculate theoretical BER(Bit Error Rate) and channel capacity of MIMO(Multi Input and Multi Output) communication system. By considering practical parameters, we obtain optimum difference frequency generation condition. The obtained primary frequency is 560 kHz, difference frequency 45kHz and acoustic power is 28.05Watt. For BER of $10^{-4}$, the range gain of parametric array communication is 3.35km compared to primary frequency communication. For channel capacity of 10bps/Hz, the SISO and $2{\times}2$ MIMO communication range of parametric array communication are 3.8km and 3.98km respectively, while primary frequency communication range is 0.83km.

Performance Improvement of FMT-OFDM System in Underwater Channel Environment (수중 채널환경에서 FMT-OFDM 시스템의 성능 향상을 위한 연구)

  • Kim, Min-sang;Ko, Hak-lim;Kim, Seung-geun;Cho, Dea-young;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.365-370
    • /
    • 2016
  • Recently, There are increasing number of studies that apply multi-carrier method, a land mobile communication method, to underwater channel environment in order to enhance the performance of underwater communication. Therefore, in this paper, in order to design a new system with improved communication performance compared to the multi-carrier method in underwater communication, we present that the RS(Resource Spreading) FMT-OFDM system has a diversity and repetition effect from resource spreading. Moreover, we verify the performance of RS FMT-OFDM system and existing FMT-OFDM system through simulations after modeling communication channels and setting the system parameter based on the data measured from the real sea. Our result indicate that, compared to the existing FMT-OFDM system, there has been an improvement in communication performance by 12dB based on BER $10^{-3}$ we also discovered that communication performance improves as the resource spreading rate increases.

Rejection of Interference Signal Using Neural Network in Multi-path Channel Systems (다중 경로 채널 시스템에서 신경회로망을 이용한 간섭 신호 제거)

  • 석경휴
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.357-360
    • /
    • 1998
  • DS/CDMA system rejected narrow-band interference and additional White Gaussian noise which are occured at multipath, intentional jammer and multiuser to share same bandwidth in mobile communication systems. Because of having not sufficiently obtained processing gain which is related to system performance, they were not effectively suppressed. In this paper, an matched filter channel model using backpropagation neural network based on complex multilayer perceptron is presented for suppressing interference of narrow-band of direct sequence spread spectrum receiver in DS/CDMA mobile communication systems. Recursive least square backpropagation algorithm with backpropagation error is used for fast convergence and better performance in matched filter receiver scheme. According to signal noise ratio and transmission power ratio, computer simulation results show that bit error ratio of matched filter using backpropagation neural network improved than that of RAKE receiver of direct sequence spread spectrum considering of con-channel and narrow-band interference.

  • PDF

Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications

  • Malik, Priyanka;Gupta, R.S.;Chaujar, Rishu;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.169-181
    • /
    • 2011
  • In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.

Device Design Guideline for Nano-scale SOI MOSFETs (나노 스케일 SOI MOSFET를 위한 소자설계 가이드라인)

  • Lee, Jae-Ki;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.1-6
    • /
    • 2002
  • For an optimum device design of nano-scale SOI devices, this paper describes the short channel effects of multi-gate structures SOI MOSFETs such as double gate, triple gate and quadruple gate, as well as a new proposed Pi gate using computer simulation. The simulation has been performed with different channel doping concentrations, channel widths, silicon film thickness, and vertical gate extension depths of Pi gate. From the simulation results, it is found that Pi gate devices have a large margin in determination of doping concentrations, channel widths and film thickness comparing to double and triple gate devices because Pi gate devices offer a better short channel effects.

Interference-Aware Channel Assignment Algorithm in D2D overlaying Cellular Networks

  • Zhao, Liqun;Wang, Hongpeng;Zhong, Xiaoxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1884-1903
    • /
    • 2019
  • Device-to-Device (D2D) communications can provide proximity based services in the future 5G cellular networks. It allows short range communication in a limited area with the advantages of power saving, high data rate and traffic offloading. However, D2D communications may reuse the licensed channels with cellular communications and potentially result in critical interferences to nearby devices. To control the interference and improve network throughput in overlaid D2D cellular networks, a novel channel assignment approach is proposed in this paper. First, we characterize the performance of devices by using Poisson point process model. Then, we convert the throughput maximization problem into an optimal spectrum allocation problem with signal to interference plus noise ratio constraints and solve it, i.e., assigning appropriate fractions of channels to cellular communications and D2D communications. In order to mitigate the interferences between D2D devices, a cluster-based multi-channel assignment algorithm is proposed. The algorithm first cluster D2D communications into clusters to reduce the problem scale. After that, a multi-channel assignment algorithm is proposed to mitigate critical interferences among nearby devices for each D2D cluster individually. The simulation analysis conforms that the proposed algorithm can greatly increase system throughput.