• Title/Summary/Keyword: Multi-bond graph

Search Result 10, Processing Time 0.024 seconds

Bond graph modeling and multivariable control of maglev system with a combined lift and guidance (편심배치방식 자기부상 시스템의 본드선도 모델링 및 다변수 제어)

  • 박전수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1091-1097
    • /
    • 1991
  • A logical and systematic procedure to derive a mathematical model for magnetically levitation(maglev) systems with a combined lift and guidance is developed by using and graph. First, bond graph is constructed for the energy-feeding system with magnetic leakage flux. And, the overall maglev system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond notations. Finally, the LQG/LTR control systems are designed for single-input single-output and for multi-input multi-output maglev systems. In this paper, it has been shown that the bond graph is an excellent method for modeling multi-energy domain systems such as maglev systems and the multivariable control system is required to improve the performance of the maglev system with a combined lift and guidance.

  • PDF

Bond Graph/Genetic Programming Based Automated Design Methodology for Multi-Energy Domain Dynamic Systems (멀티-에너지 도메인 동적 시스템을 위한 본드 그래프/유전프로그래밍 기반의 자동설계 방법론)

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.677-682
    • /
    • 2006
  • Multi-domain design is difficult because such systems tend to be complex and include a mixtures of electrical, mechanical, hydraulic, and thermal components. To design an optimal system, unified and automated procedure with efficient search technique is required. This paper introduces design method for multi-domain system to obtain design solutions automatically, combining bond graph which is domain independent modeling tool and genetic programming which is well recognized as a powerful tool for open-ended search. The suggested design methodology has been applied for design of electric fitter, electric printer drive, and and pump system as a proof of concept for this approach.

An Efficient Topology/Parameter Control in Evolutionary Design for Multi-domain Engineering Systems

  • Seo, Ki-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.108-113
    • /
    • 2005
  • This paper suggests a control method for an efficient topology/parameter evolution in a bond graph-based GP design framework that automatically synthesizes designs for multi-domain, lumped parameter dynamic systems. We adopt a hierarchical breeding control mechanism with fitness-level-dependent differences to obtain better balancing of topology/parameter search - biased toward topological changes at low fitness levels, and toward parameter changes at high fitness levels. As a testbed for this approach in bond graph synthesis, an eigenvalue assignment problem, which is to find bond graph models exhibiting minimal distance errors from target sets of eigenvalues, was tested and showed improved performance for various sets of eigenvalues.

Automated Design Method for Multi-domain Engineering Systems (멀티-도메인 공학시스템의 자동설계방법)

  • 서기성;박세현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1218-1227
    • /
    • 2004
  • Multi-domain engineering systems include electrical, mechanical, hydraulic, pneumatic, and thermal components, making it difficult to design a system because of their complexity and inter domain nature. In order to obtain an optimal design, a unified design approach for each domain and an automated search method are required. This paper suggests a method for automatically synthesizing designs for multi-domain systems using the combination of bond graph that is domain independent and genetic programming that is well recognized as a powerful tool for open-ended search. To investigate the effect of proposed approach, an eigenvalue design problem is tested for some sample target sets of eigenvalues with different embryos.

Evolutionary Design for Multi-domain Engineering System - Air Pump Redesign

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.228-233
    • /
    • 2006
  • This paper introduces design method for air pump system using bond graph and genetic programming to maximize outflow subject to a constraint specifying maximum power consumption. The air pump system is a mixed domain system which includes electromagnetic, mechanical and pneumatic elements. Therefore an appropriate approach for a better system for synthesis is required. Bond graphs are domain independent, allow free composition, and are efficient for classification and analysis of models. Genetic programming is well recognized as a powerful tool for open-ended search. The combination of these two powerful methods, BG/GP, was tested for redesign of air pump system.

Hierarchical Topology/parameter Evolution in Engineering Design

  • Seo Ki sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.185-188
    • /
    • 2005
  • This paper suggests a control method for efficient topology/parameter evolution in a bond-graph-based GP design framework that automatically synthesizes designs for multi-domain, lumped parameter dynamic systems, We adopt a hierarchical breeding control mechanism with fitness-level-dependent differences to obtain better balancing of topology/parameter search - biased toward topological changes at low fitness levels, and toward parameter changes at high fitness levels. As a testbed for this approach, an eigenvalue assignment problem, which is to find bond graph models exhibiting minimal distance errors from target sets of eigenvalues, was tested and showed improved performance for various sets of eigenvalues.

  • PDF

Multi-Domain Model for Electric Traction Drives Using Bond Graphs

  • Silva, Luis I.;De La Barrera, Pablo M.;De Angelo, Cristian H.;Aguilera, Facundo;Garcia, Guillermo O.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.439-448
    • /
    • 2011
  • In this work the Multi-Domain model of an electric vehicle is developed. The electric domain model consists on the traction drive and allows including faults associated with stator winding. The thermal model is based on a spatial discretization. It receives the power dissipated in the electric domain, it interacts with the environment and provides the temperature distribution in the induction motor. The mechanical model is a half vehicle model. Given that all models are obtained using the same approach (Bond Graph) their integration becomes straightforward. This complete model allows simulating the whole system dynamics and the analysis of electrical/mechanical/thermal interaction. First, experimental results are aimed to validate the proposed model. Then, simulation results illustrate the interaction between the different domains and highlight the capability of including faults.

Simulation of Electric Vehicles Combining Structural and Functional Approaches

  • Silva, L.I.;Magallan, G.A.;De La Barrera, P.M.;De Angelo, C.H.;Garcia, G.O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.848-858
    • /
    • 2014
  • In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.

Evolutionary Design for Multi-domain Engineering System - Air Pump

  • Seo, Ki-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.323-326
    • /
    • 2005
  • This paper introduces design method for air pump system using bond graph and genetic programming to maximize outflow subject to a constraint specifying maximum power consumption. The air pump system is a mixed domain system which includes electromagnetic, mechanical and pneumaticelements. Therefore an appropriate approach for a better system for synthesis is required. Bond graphs are domain independent, allow free composition, and are efficient for classification and analysis of models, Genetic programming is well recognized as a powerful tool for open-ended search. The combination of these two powerful methods for evolution of multi-domain system, BG/GP, was tested for redesign of air pump system.

  • PDF

Robust LQ control of magnetically levitation systems with a combined lift and guidance using loop-shaping techniques (루프형성 기법을 이용한 편심배치방식 자기부상 시스템의 강인 LQ 제어)

  • 박전수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.747-753
    • /
    • 1992
  • The modeling and control design schemes are developed for maglev systems with a combined lift and guidance. First, bond graph techniques are applied for modeling these multi-energy domain systems more logically and systematically. And the stability loop via pole placement and the performance loop via loop-shaping LQ control are designed. The suggested controller satisfies the required characteristics of stability and performance simultaneously. Finally, the robustness of the synthesized maglev control system is evaluated for the variations of air gap and vehicle mass through computer simulation.

  • PDF