DOI QR코드

DOI QR Code

Multi-Domain Model for Electric Traction Drives Using Bond Graphs

  • Silva, Luis I. (Grupo de Electronica Aplicada, Facultad de Ingenieria, Universidad Nacional de Rio Cuarto) ;
  • De La Barrera, Pablo M. (Grupo de Electronica Aplicada, Facultad de Ingenieria, Universidad Nacional de Rio Cuarto) ;
  • De Angelo, Cristian H. (Grupo de Electronica Aplicada, Facultad de Ingenieria, Universidad Nacional de Rio Cuarto) ;
  • Aguilera, Facundo (Grupo de Electronica Aplicada, Facultad de Ingenieria, Universidad Nacional de Rio Cuarto) ;
  • Garcia, Guillermo O. (Grupo de Electronica Aplicada, Facultad de Ingenieria, Universidad Nacional de Rio Cuarto)
  • 투고 : 2011.01.01
  • 발행 : 2011.07.20

초록

In this work the Multi-Domain model of an electric vehicle is developed. The electric domain model consists on the traction drive and allows including faults associated with stator winding. The thermal model is based on a spatial discretization. It receives the power dissipated in the electric domain, it interacts with the environment and provides the temperature distribution in the induction motor. The mechanical model is a half vehicle model. Given that all models are obtained using the same approach (Bond Graph) their integration becomes straightforward. This complete model allows simulating the whole system dynamics and the analysis of electrical/mechanical/thermal interaction. First, experimental results are aimed to validate the proposed model. Then, simulation results illustrate the interaction between the different domains and highlight the capability of including faults.

키워드

참고문헌

  1. C. Chan, A. Bouscayrol, and K. Chen, "Electric, hybrid, and fuelcell vehicles: Architectures and modeling," IEEE Trans. Veh. Technol., Vol. 59, No. 2, pp. 589-598, Feb. 2010. https://doi.org/10.1109/TVT.2009.2033605
  2. K. Ohyama, M. Nashed, K. Aso, H. Fujii, and H. Uehara, "Design using finite element analysis of a switched reluctance motor for electric vehicle," Journal of Power Electronics, Vol. 6, No. 2, pp. 163-171, Apr. 2006.
  3. S. Leva, A. Morando, and P. Colombaioni, "Dynamic analysis of a highspeed train," IEEE Trans. Veh. Technol., Vol. 57, No. 1, pp. 107-119, Jan. 2008. https://doi.org/10.1109/TVT.2007.901858
  4. F. Roy, B. Dutoit, F. Grilli, and F. Sirois, "Magneto-thermal modeling of second-generation hts for resistive fault current limiter design purposes," IEEE Trans. Appl. Supercond., Vol. 18, No. 1, pp. 29-35, Mar. 2008. https://doi.org/10.1109/TASC.2008.917576
  5. S. Onoda and A. Emadi, "PSIM-based modeling of automotive power systems: conventional, electric, and hybrid electric vehicles," IEEE Trans. Veh. Technol., Vol. 53, No. 2, pp. 390-400, Mar. 2004. https://doi.org/10.1109/TVT.2004.823500
  6. R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, Prentice Hall, 2001.
  7. P. Voigt and G. Wachutka, "Electro-fluidic microsystem modeling based on kirchhoffian network theory," in International Conference on Solid State Sensors and Actuators, Vol. 2, pp. 1019-1022, Jun. 1997.
  8. F. E. Cellier, Continuous System Modeling, New York: Springer Verlag, 1991.
  9. D. C. Karnopp, D. L. Margolis, and R. C. Rosenberg, System Dynamics: Modeling And Simulation of Mechatronic Systems, New York, USA: Willey InterCiences, 2000.
  10. A. Reibiger and H. Loose, "Bond graphs and matroids," Mathematics and Computers in Simulation, Vol. 53, No. 4-6, pp. 323-332, Oct. 2000. https://doi.org/10.1016/S0378-4754(00)00219-6
  11. L. Silva, P. de la Barrera, C. De Angelo, G. Bossio, and G. Garcia, "Multi-domain modeling of electric traction drives using bond graphs: Application to fault diagnosis," in Industrial Electronics, IECON '09, 35th Annual Conference of IEEE, pp. 3455-3460, 2009.
  12. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery, New York, USA: IEEE Press, 1994.
  13. A. Lamine and E. Levi, "Dynamic induction machine modelling considering the stray load losses," in 39th International Universities Power Engineering Conference, Vol. 1, pp. 582-586, Sep. 2004.
  14. R. M. Tallam, T. G. Habetler, and R. G. Harley, "Transient model for induction machines with stator winding turn faults," IEEE Trans. Ind. Appl., Vol. 38, No. 3, pp. 632-637, May/Jun. 2002. https://doi.org/10.1109/TIA.2002.1003411
  15. A. Bellini, C. Concari, G. Franceschini, E. Lorenzani, C. Tassoni, and A. Toscani, "Thorough understanding and experimental validation of current sideband components in induction machines rotor monitoring," in IEEE Industrial Electronics, IECON '06, pp. 4957-4962, 2006.
  16. G. O. Garcia, "Controladores eficientes para el accionamiento de motores de induccion," Ph.D. Tesis, Univ. Fed. de Rio de Janeiro (UFRJ), Mar. 1994.
  17. G. O. Garcia, J. C. Mendes Luis, R. M. Stephan, and E. H. Watanabe, "An efficient controller for an adjustable speed induction motor drive," IEEE Trans. Ind. Electron., Vol. 41, No. 5, pp. 533-539, Oct. 1994.
  18. E. Levi, "Impact of iron loss on behavior of vector controlled induction machines," IEEE Trans. Ind. Appl., Vol. 31, No. 6, pp. 1287-1296, Nov./Dec. 1995. https://doi.org/10.1109/28.475699
  19. E. Levi, M. Sokola, A. Boglietti, and M. Pastorelli, "Iron loss in rotorflux- oriented induction machines: identification, assessment of detuning, and compensation," IEEE Trans. Power Electron., Vol. 11, No. 5, pp. 698-709, Sep. 1996. https://doi.org/10.1109/63.535402
  20. P. M. de la Barrera, G. R. Bossio, J. A. Solsona, and G. O. Garcia, "On-line iron loss resistance identification by a state observer for rotor-flux-oriented control of induction motor," Energy conversion and management, Vol. 49, No. 10, pp. 2742-2747, Oct. 2008. https://doi.org/10.1016/j.enconman.2008.03.021
  21. S. Junco, "Real and complex power bond graph modeling of the induction motor," in International Conf. on Bond Graph Modeling and Simulation, ICBGM '99, pp. 323-328, 1999.
  22. D. Karnopp, "Understanding induction motor state equations using bond graph," in International Conference on Bond Graph Modeling and Simulation, ICBGM '03, 2003.
  23. A. Donaire, "Analisis y sintesis de sistemas no lineales de control en base a propiedades fisicas, estructurales y causales de modelos bond graph," Ph.D. Tesis, Universidad Nacional de Rosario, Mar. 2009.
  24. R. Ortega, C. Canudas, and S. Seleme, "Nonlinear control of induction motors: Torque tracking with unknown load disturbance," IEEE Trans. Autom. Control, Vol. 38, No. 11, pp. 1675-1680, Nov. 1993. https://doi.org/10.1109/9.262039
  25. J. Bastos, M. Cabreira, N. Sadowski, S. Arruda, and S. Nau, "A thermal analysis of induction motors using a weak coupled modeling," IEEE Trans. Magn., Vol. 33, No. 2, pp. 1714-1717, Mar. 1997. https://doi.org/10.1109/20.582603
  26. D. Staton, A. Boglietti, and A. Cavagnino, "Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors," IEEE Trans. Energy Convers., Vol. 20, No. 3, pp. 620-628, Sep. 2005. https://doi.org/10.1109/TEC.2005.847979
  27. L. I. Silva, G. A. Magallan, C. H. De Angelo, and G. O. Garcia, "Vehicle dynamics using multi-bond graphs: Four wheel electric vehicle modeling," in 34th Ann. Conf. IEEE Ind. Electronics Society, IECON '08, pp. 2846-2851, Nov. 2008.
  28. C. Kwon, "An on-line rotor resistance estimator for induction machine drives," Journal of Power Electronics, Vol. 9, No. 3, pp. 354-364, May 2009.
  29. S. F. Legowski, A. H. M. S. Ula, and A. M. Trzynadlowski, "Instantaneous power as a medium for the signature analysis of induction motors," IEEE Trans. Ind. Appl., Vol. 32, No. 4, Jul./Aug. 1996.
  30. Y. Lee and T. G. Habetler, "A stator turn fault tolerant strategy for induction motor drives in safety critical applications," in Power Electronics Specialists Conference, PESC '06. 37th IEEE, pp. 1-7, 2006.
  31. A. M. S. Mendes, X. M. Lopez-Fernandez, and A. J. Marques Cardoso, "Thermal performance of a three-phase induction motor under fault tolerant operating strategies," IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1537-1544, May 2008. https://doi.org/10.1109/TPEL.2008.920876

피인용 문헌

  1. Coupling Bond Graph and Energetic Macroscopic Representation for Electric Vehicle Simulation vol.24, pp.7, 2014, https://doi.org/10.1016/j.mechatronics.2013.12.010
  2. Multi-Domain Modeling of Induction Motor with Stator Winding Turn-Faults vol.45, pp.20, 2012, https://doi.org/10.3182/20120829-3-MX-2028.00280
  3. Multi-Domain Model of Faulty Stator Core for Thermal Effects and Losses Evaluation vol.46, pp.2, 2018, https://doi.org/10.1080/15325008.2018.1444685