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Abstract

This paper suggests a control method for an efficient topology/parameter evolution in a bond graph-based GP design framework
that automatically synthesizes designs for multi-domain, lumped parameter dynamic systems. We adopt a hierarchical breeding
control mechanism with fitness-level-dependent differences to obtain better balancing of topology/parameter search - biased
toward topological changes at low fitness levels, and toward parameter changes at high fitness levels. As a testbed for this
approach in bond graph synthesis, an eigenvalue assignment problem, which is to find bond graph models exhibiting minimal

distance errors from target sets of eigenvalues, was tested and showed improved performance for various sets of eigenvalues.
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1. Introduction

Engineering design of dynamic systems usually involves
discovering topological connections of components and/or
optimizing of their numeric parameters
manner[1-4]. Evolutionary computation has been used many
times to automate the creation of engineen'ng designs[3,4].
Especially, genetic programming has been used for design of
several patented electrical circuits, controllers, and antennas
[5,6].

The topology specifies the system’s structure, which
consists of the number and type of components and their
interconnections. On the other hand, parameter optimization
seeks the best numerical values for given a topology. Some
design problems are concentrated on topology only under
given parameter values such as topology optimization in truss
design([1,2], where the connectivity of members in a truss is to
be determined. On the other hand, there exists parameter only
optimization with given topologies, such as sizing optimization
of trusses [3], where cross-sectional areas of members are
considered as design variables.

Most  engineering design problems involve making
topological connections of components and optimizing their
numeric values in an open-ended manner. That means both
topology and parameter values should be optimized[4-6].
However, no definitive approach has yet been introduced for
topology/parameter evolution. Most approaches to finding
better designs are limited to using huge populations.

The key idea of our approach is to provide different
breeding probabilities for topology and parameter operations
according to the fitness level of each subpopulation in a
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genetic programming with  fitness-stratified populations.
Additionally, more topology-altering operations are executed in
earlier generations and more parameter-altering operations are
executed in later generations.

The Bond Graph / Genetic Programming (BG/GP) design
methodology[7] has been developed to overcome limitations of
single-domain design approaches and enable open-ended
search, based on the combination of these two powerful tools
- bond graph[8] and genetic programming[5]. It has been
tested for a few applications - an analog filter[10], printer
drive mechanism{11]. BG/GP worked efficiently for these
applications.

As a test class of design problems for topology/parameter
control in bond graph synthesis, we have chosen one in which
the objective is to realize a design having a specified set of
eigenvalues. The eigenvalue assignment problem is well
defined and has been studied effectively using linear
components with constant parameters. Section 2 discusses the
nature of the topology/parameter design problem and bond
graph synthesis. Section 3 describes genetic construction for
bond graph model. Section 4 explains hierarchical probability
control method. Section S5 presents results for eigenvalue
design problems, and Section 6 concludes the paper.

2. Topology/Parameter Design in Bond Graph
Synthesis

2.1 The nature
engineering problem

of topology/parameter design in

Topology connection is represented as a directed graph G
with vertex set V and edge set E, where V=1{vy v, ..
U,,—1} and E(G):{eij:{vjv U,'} | Ve v, v; € V3. Given
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parameter values are represented as a function G() ={(v;
fFloDlv; eV, f(v,)eR}.

Some design problems are to determine topologies only
under given parameter values or parameters optimization with
given topologies(Fig. 1).

Topology-Only Search

with Fixed Parameter i
Topology/Parameter
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Parameter-Only Search
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Fig. 1. Topology/Parameter design problem

However, most engineering design problems involve
discovering good topological connections of components and
optimizing their numeric values, simultaneously in an
open-ended manner. In search for good designs for
topologically open dynamic systems, no topology can be
evaluated in the absence of an associated set of parameters;
and conversely, no set of parameter values can be evaluated
except within the context of a given topology.

An obvious approach is to allocate to each new topology
whatever amount of parameter search effort is needed to find
at least a locally optimal parameterization, before judging the
quality of the topology. A second strategy might be to
allocate a fixed amount of search effort to each topology,
adequate to optimize the parameters in many cases. However,
such strategies may consume far more search effort than is
practical during a simultaneous topology/parameter search, and
when to stop each parameter search is difficult to determine.

2.2 Bond Graph Synthesis

Bond graph modeling[8,9] is a powerful method that
enables a unified approach to the analysis, synthesis and
evaluation of dynamic system. It represents the common
energy processes of multi-domain systems -  electrical,
mechanical, fluid, and thermal systems - in one graphical
notation, as shown in Fig. 2.

The Bond Graph / Genetic Programming (BG/GP) design
methodology has been developed to overcome limitations of
single-domain design approaches and enable open-ended
search, based on the combination of these two powerful tools
and tested for a few applications[7,10,11].
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Fig. 2. The same bond graph model for two different domains
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The scheme of topology/parameter search in bond graphs is
as follows. Fig. 3 shows component types typically used in

bond graphs, including junctions, sources of effort or flow,
one-port elements like resistors, capacitors and inductors,
2-port elements like transformers and gyrators, and
higher-level modules composed of lower-level primitive
elements. "Below the ling" are associated parameters.

Fig. 3. The scheme of topology/parameter space in bond
graphs

3. Genetic constructor for bond graph
synthesis

The BG/GP system used GP functions and terminals for
bond graph construction as follows. There are four types of
functions: add functions that can be applied only to a junction
and which add a C, I, or R element; insert functions that can
be applied to a bond and which insert a O-junction or
1-junction into the bond; replace functions that can be applied
to a node and which can change the type of element and
corresponding parameter values for C, I, or R elements; and
arithmetic functions that perform arithmetic operations and can
be used to determine the numerical values associated with
components (Table 1). Details of function definition and GP
process are illustrated in [7].

Table 1. GP terminals and functions

Name #Args Description
add C 4 Add a C element to a junction
add_I 4 Add an I element to a junction
add R 4 Add an R element to a junction
insert_JO 3 Insert a Q-junction in a bond
insert_J1 3 Insert a 1-junction in a bond
replace C 2 Replace the current element
with a C element
replace 1 2 Replace the current element
with an I element
replace R 2 Replace the current element
with an R element
+ 2 Add two ERCs
- 2 Subtract two ERCs
enda 0 End terminal for add element
endi 0 End terminal for insert junction
endr 0 End terminal for replace element
erc 0 Ephemeral random constant (ERC)

In this approach, GP functions in Table 1 are classified into
three categories - topology operation, intermediate topology
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operation, and parameter operation. The topology level
corresponds to insert junctions(0, 1) and add elements(C, I,
and R) operations, which determine topological connections
among junctions and elements. such as insert_JO, insert J1,
add_C, add_I, and add R. Some of them are illustrated in Fig.
4 and 5.
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Fig 5. add_R function

The intermediate topology level has replacing a C, I and R
elements with another elements, such as replace_C, replace I,
and replace R. The replace C operation replaces current
clement with C element, as shown in Fig. 6. The third
parameter level includes numerical operations to fill in values
of elements, such as C (capacitor), I (inductor), and R
(resistor) as shown in Fig. 7(where, ERC means ephemeral
random constant).

4. Hierarchical breeding control method

In this paper, a hierarchical breeding control mechanism is
adopted to obtain better performance based on differential
balancing of topology-altering operations and
parameter-altering operations according to fitness level, in a
fitness-structured multi-population model. The basic idea for
this control mechanism arises from observing the human
design process. Usually, preliminary or conceptual design
involves more structural modification, and final or detailed

110

design involves more parameter tuning - i.e., there is greater
concentration on design topology in the early stage and more
on parameter tuning in the later stage.
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Fig. 6. replace_C function
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Fig. 7. ERC numerical operation

Therefore, the key concept is to provide different breeding
probabilities for topology-altering and parameter-altering
operations according to fitness level of the subpopulation (Fig.
8). Subpopulations are organized in a hierarchy with ascending
fitness levels. In other words, topology-altering operations
have higher probability than parameter-altering operations at
low fitness levels, and vice-versa. Additionally, more
topology-altering operations are executed in earlier generations
and more parameter-altering operations are executed in later
generations(Fig. 9).
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Fig. 8. Hierarchical breeding control structure.
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Fig. 9. Distribution of breeding control probability

5. Experiments and Analysis

To evaluate and compare the proposed approach with the
previous one, the eigenvalue assignment problem is used, for
which the design objective is to find bond graph models with
minimal distance errors from a target set of eigenvalues(Fig.
10). It is a classical "inverse" design problem - seeking
something with given behavior, rather than the "forward"
analysis problem of calculating the behavior of a given
artifact.

Im
A
X : Eigenvalue | 3
X T2
X +1
X
t t 1 » Re
X -1

Fig. 10. An example of a target set of eigenvalues

Fig. 11 gives an example of the solution eigenvalues
obtained for a typical run with targets -1+ 2j, -2+ j. The
corresponding bond graph model obtained is shown on the
right side of Fig. 11. Same result for an six-eigenvalues is
shown in Fig. 12.

Eigenvalues
Target eigenvahees : -1 £2j, -2

Solution eigenvahes:-1.028 + 1.929;,
-2.008 + 0.995j

R
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Fig. 11. An four-eigenvalue result
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Fig. 12. An six-eigenvalue result

The following sets (consisting of various 6-, and
10-eigenvalue target sets, respectively) were used for
topology/parameter control runs.

Eigenvalue sets used in experiments:

1) {-1£ 2j, -2+ j, -3+ 0.5j}

2) {-10+ j, -1+ 10j, -3+ 3j}

3) {-20+ j, -1= 204, -7+ 7}

4y {-1, -2, -3, -4, -5, -6}

5) {-20+ j, -1 20§, -7+ 7, -12+ 4, -4+ 12}
6) {-1, -2, -3, -4, -5, -6, -7, -8, -9, -10}

The fitness function is defined as follows: pair each target
eigenvalue one: one with the closest one in the solution;
calculate the sum of distance errors between each target
eigenvalue and the solution’s corresponding eigenvalue, divide
by the order, and perform hyperbolic scaling. Relative distance
error (normed by the distance of the target from the origin) is
used. We used a strongly-typed version of lilgp [12] to
generate bond graph models. These examples were run on a
single Pentium IV 2.8GHz PC with 512MB RAM. The GP
parameters were as shown below.

Number of generations : 500

Population sizes : 100 in each of ten subpopulations
Initial population: half and_half

Initial depth : 3-6

Max depth : 12 (with 800 max_nodes)

Selection : Tournament (size=7)

Crossover : 0.9

Mutation : 0.1

The results of 6- and 10-eigenvalue runs are provided in
Fig. 13 and 14, showing average distance error for each set
across 10 experiments. Fig. 13 illustrates the comparison
between the basic approach (without topology/parameter
control) and the hierarchical topology/parameter breeding
control on typical complex conjugate and real six-eigenvalue
target sets. In all four sets, numbered 1)-4), the average error
in the hierarchical topology/parameter breeding control
approach is smaller than that of the basic approach. Fig. 14
represents the results on two 10-eigenvalue sets, set numbers
5) and 6) above, and shows that the new approach also
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outperforms the basic approach on these problems.

There are other factors to be determined to obtain optimal
results, such as distribution of breeding control rate for
topology- and parameter-altering operations, the control rate
for the intermediate topology, and the ratio between fitness
and generation etc. Current results are due to simple setting of
control factors based on a few preliminary experiments.
Therefore, much improvement is expected if optimal values of
these control factors are found through further experiments
and analysis. '

Error

Average Distance

Eigen Sets

Fig. 13. Results for 6 eigenvalues
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Fig. 14. Results for 10 eigenvalues(set 1 is eigenvalue set 5
above, etc.)

6. Conclusion

This paper has introduced a hierarchical breeding control
method for efficient topology/parameter evolution in
bond-graph-based GP design. We adopt a hierarchical breeding
control mechanism, implemented in a set of subpopulations
separated hierarchically according to fitness levels, to obtain
better performance based on balancing of topology/parameter
search using a given set of switched modular primitives.
Topology-altering operations are given higher probability in
high-fitness subpopulations, and parameter-altering operations
get higher probability in lower-fitness subpopulations.
Simultaneously, in all subpopulations, the percentage of
topology-altering operations is reduced as the number of
generations increases.

As a proof of concept for this approach, the eigenvalue
assignment problem, which is to synthesize bond graph
models with minimum distance errors from pre-specified target
sets of eigenvalues, was used. Results showed Dbetter
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performance for all tested eigenvalue sets when the new
topology/parameter control method was used. This tends to
support the conjecture that a carefully tailored representation
and sophisticated topology/parameter control method will
improve the efficiency of GP search.
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