• 제목/요약/키워드: Multi-body Systems

검색결과 195건 처리시간 0.026초

머시닝센터의 다축오차 평가 방법 (Evaluation Method of the Multi-axis Errors for Machining Centers)

  • 황주호;심종엽;고태조
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.904-914
    • /
    • 2011
  • The volumetric errors of CNC machining centers are determined by 21 errors, including 3 linear errors, 6 straightness errors, 3 perpendicular errors, 9 angular errors and non-rigid body errors of the machine tool. It is very time consuming and hard to measure all of these errors in which laser interferometer and other parts are used directly. Hence, as many as 21 separate setups and measurements are needed for the linear, straightness, angular and perpendicular errors. In case of the 5-axis machining centers, two more rotary tables are used. It can make 35 error sources of the movement. Therefore, the measured errors of multi movements of the 5-axis tables are very complicated, even if the relative measured errors are measured. This paper describes the methods, those analyze the error sources of the machining centers. Those are based on shifted diagonal measurements method (SDM), R-test and Double ball bar. In case, the angular errors of machine are small enough comparing with others, twelve errors including three linear position errors, six straightness errors and three perpendicular errors can be calculated by using SDM. To confirm the proposed method, SDM was applied to measuring 3 axes of machine tools and compared with directly measurement of each errors. In addition, the methods for measuring relative errors of multi-axis analysis methods using R-test and Double Ball Bar are introduced in this paper.

MLP에 기반한 감정인식 모델 개발 (Development of Emotion Recognition Model based on Multi Layer Perceptron)

  • 이동훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.372-377
    • /
    • 2006
  • 본 논문에서, 우리는 뇌파를 이용하여 사용자의 감정을 인식하는 감정인식 모델을 제안한다. 사용자의 감정을 인식하기 위해서는 우선 생체 데이터나 감정 데이터를 포함한 뇌파의 정량적인 데이터를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감정 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감정 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 패턴인식 기법을 사용한다. 본 논문에서 제안한 감정인식 모델의 실험을 위하여 특정 공간 내에서 여러 피험자의 감정별 뇌파를 측정하고, 측정된 뇌파로 집중도 및 안정도를 도출하여 유의미한 데이터로 감정 DB를 구축한다. 감정별 DB를 본 논문에서 제안한 감정인식 모델로 학습한 후 새로운 사용자의 뇌파로 현재 사용자의 감정을 인식한다. 마지막으로 피험자의 수와 은닉 노드의 수에 따른 인식률의 변화를 측정함으로서 뇌파를 이용한 감정인식 모델의 성능을 평가한다.

지능형 뱀 로봇에 관한 연구 (Research about Intelligent Snake Robot)

  • 김성주;김종수;전홍태
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.70-75
    • /
    • 2003
  • 기존 이동로봇의 활발한 연구와 더불어 다양한 형태의 이동로봇이 등장하였다. 이에 본 논문에서는 8축으로 구성된, 총 16 Degree Of Freedom을 가지는 다 관절 뱀 로봇을 제작하였다. 뱀 로봇은 지면과의 진행 마찰력을 고려하여 무동력 바퀴를 사용하였다. 또한 PC Cam과 초음파 센서를 사용하여 각 관절이 움직일 수 있는 Joint Angle을 나타내기 위하여 Target의 색상과 거리를 입력으로 하였다. 뱀 로봇은 머리부분, 몸통 그리고 꼬리부분으로 나뉘어 진행하는 방식을 가지며 PC Cam 을 통해 화면에 보여지는 움직이는 특정 목표물에 대하여 진행을 하며, 진행 중 움직이거나 고정되어있는 Obstacle이 포착될 경우 충돌회피를 통하여 Target을 추종하는 방식을 실험적으로 보이고자 한다.

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

동적 특성을 고려한 휴머노이드 하체 부품의 구조최적설계 (Structural Optimization of the Lower Parts in a Humanoid Considering Dynamic Characteristics)

  • 홍을표;이일권;유범재;김창환;박경진
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.882-889
    • /
    • 2008
  • A humanoid is a robot with its overall appearance based on that of the human body. When the humanoid moves or walks, dynamic forces act on the body structure. Although the humanoid keeps the balance by using a precise control, the dynamic forces generate unexpected deformation or vibration and cause difficulties on the control. Generally, the structure of the humanoid is designed by the designer's experience and intuition. Then the structure can be excessively heavy or fragile. A humanoid design scenario for a systematic design is proposed to reduce the weight of the structure while sufficient strength is kept. Lower parts of the humanoid are selected to apply the proposed design scenario. Multi-body dynamics is employed to calculate the external dynamic forces on the parts and structural optimization is carried out to design the lower parts. Because structural optimization using dynamic forces directly is fairly difficult, linear dynamic response structural optimization using equivalent static loads is utilized. Topology and shape optimizations are adopted for two steps of initial and detailed designs, respectively. Various commercial software systems are used for analysis and optimization. Improved designs are obtained and the design results are discussed.

Self-Learning Control of Cooperative Motion for Humanoid Robots

  • Hwang, Yoon-Kwon;Choi, Kook-Jin;Hong, Dae-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.725-735
    • /
    • 2006
  • This paper deals with the problem of self-learning cooperative motion control for the pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is developed to simulate the system dynamics. A simple genetic algorithm(SGA) is used to find the cooperative motion, which is to minimize the total energy consumption for the entire humanoid robot body. And the multi-layer neural network based on backpropagation(BP) is also constructed and applied to generalize parameters, which are obtained from the optimization procedure by SGA, in order to control the system.

Fall Risk Assessments Based on Postural and Dynamic Stability Using Inertial Measurement Unit

  • Liu, Jian;Zhang, Xiaoyue;Lockhart, Thurmon E.
    • Safety and Health at Work
    • /
    • 제3권3호
    • /
    • pp.192-198
    • /
    • 2012
  • Objectives: Slip and fall accidents in the workplace are one of the top causes of work related fatalities and injuries. Previous studies have indicated that fall risk was related to postural and dynamic stability. However, the usage of this theoretical relationship was limited by laboratory based measuring instruments. The current study proposed a new method for stability assessment by use of inertial measurement units (IMUs). Methods: Accelerations at different body parts were recorded by the IMUs. Postural and local dynamic stability was assessed from these measures and compared with that computed from the traditional method. Results: The results demonstrated: 1) significant differences between fall prone and healthy groups in IMU assessed dynamic stability; and 2) better power of discrimination with multi stability index assessed by IMUs. Conclusion: The findings can be utilized in the design of a portable screening or monitoring tool for fall risk assessment in various industrial settings.

직교배열표를 이용한 승객보호장구의 설계 (Design Recommendations of the Occupant Protection Systems Using Orthogonal Arrays)

  • 임재문;박경진
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.208-215
    • /
    • 1999
  • Using the orthogonal arrays and the occupant analysis software based on the multi-body dynamics , two interactive design algorithms are proposed to improve the initial design of the occupant protection systems. Algorithm 1 sequentially moves the narrow design space within the upper and the lower design limit. Algorithm 2 sequentially reduces the relatively wide design space. Each design algorithm is composed of two levels . The first level is to improve the characteristics of the crash performance considering the noise factors. In order to obtain the robust design, the second level reduces the variations the noise factors. In order to obtain the robust design, the second level reduces the variations due to the tolerance of the design variable. To utilize the algorithm 1, HIC(Head Injury Criterion) , 3 msec criterion value of the chest acceleration and the femur load decreased by 27.4%, 10.4% and 55.8%, respectively. To utilizer the algorithm 2 , the results decreased by 38.0%, 10.5% and 3.0% , respectively.

  • PDF

이륜 밸런싱 로봇에 대한 비선형 모델 기반 외란보상 기법 (Nonlinear Model-Based Disturbance Compensation for a Two-Wheeled Balancing Mobile Robot)

  • 유재림;김용국;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.826-832
    • /
    • 2016
  • A two-wheeled balancing mobile robot (TWBMR) has the characteristics of both nonlinear and underactuated system. In this paper, the disturbances acting on a TWBMR are classified into body disturbance and wheel disturbance. Additionally, we describe a nonlinear disturbance observer, which is suitable as a single input multi-output (SIMO) system for the longitudinal motion of TWBMR. Finally, we propose a reasonable disturbance compensation technique that combines the indirect reference input of equilibrium point and the direct torque compensation input. Simulations and experimental results show that the proposed disturbance compensation method is an effective way to achieve robust postural stability, specifically on inclined terrains.