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Objectives: Slip and fall accidents in the workplace are one of the top causes of work related fatalities and injuries. Previous stud-
ies have indicated that fall risk was related to postural and dynamic stability. However, the usage of this theoretical relationship 
was limited by laboratory based measuring instruments. The current study proposed a new method for stability assessment by 
use of inertial measurement units (IMUs). 
Methods: Accelerations at different body parts were recorded by the IMUs. Postural and local dynamic stability was assessed 
from these measures and compared with that computed from the traditional method. 
Results: The results demonstrated: 1) significant differences between fall prone and healthy groups in IMU assessed dynamic sta-
bility; and 2) better power of discrimination with multi stability index assessed by IMUs. 
Conclusion: The findings can be utilized in the design of a portable screening or monitoring tool for fall risk assessment in vari-
ous industrial settings.
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Introduction

According to the statistics from the US Department of Labor, 

fall accidents in work places is one of the top causes for work 

related fatalities and injuries in recent years [1]. Focusing on 

the construction industrial sector specifically, in 2007, a total of 

36,210 workers were injured from slips, trips, and falls, among 

which 447 of  them passed away [2]. Even worse, statistics 

showed that the situation has not been improved throughout 

the years, regardless of the various types of workplace design 

guidelines and recommended work practices [3]. Therefore, 

reducing the occurrence of falls has become a challenge, yet, 

it has also become a critical mission of both employers and re-

searchers working in the industrial safety sector. 

Admitting that slips, trips, and falls are inevitable in some 

hazardous environments (e.g., extremely wet and slippery 

floors), previous studies indicated that individuals do have dif-

ferent levels of  fall risk; i.e., some workers tend to fall more 

than others even in the same environment. In light of this fact, 

if  reliable diagnostic approach could be developed to identify 

fall prone individuals or to track an individual’s degradation of 

balance control, it would aid in employee screening and task 

assignment, and be beneficial in reducing fall accidents, just as 

valuable as the endeavor devoted to improve the workplace de-

sign.

Generally, an individual’s level of  fall risk is determined 

by various intrinsic factors, such as musculoskeletal and sen-

sory functions, fatigue, training, and medication effects, as well 
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as mental status such as caution or a fear of fall [4]. However, 

some of these factors are not easy to quantify and moreover, 

the dynamic combinations of them add even more difficulties 

to the problem. Instead of measuring these “direct and funda-

mental” causes, in practice, other “indirect and comprehensive” 

indices have been proposed and utilized, among which postural 

and dynamic stability, indicating the individual’s mechanism 

and ability of  posture control and locomotion [5], have been 

important measures in fall risk studies. 

For assessing postural stability, the average velocity of cen-

ter-of-pressure (COPv) during quiet upright standing has been 

used by many studies. COPv quantifies the intensity of  pos-

tural sway and is controlled by the musculoskeletal and sensory 

systems. In terms of reliability, Lafond et al. [6] investigated six 

different measures estimated from force plate data and found 

that COPv was the most reliable measure for assessing postural 

steadiness. While assessing dynamic stability, the concept of 

local dynamic stability has become more and more accepted. 

The local dynamic stability, as characterized by the maximum 

Lyapunov exponent (maxLE), measures the resistance of hu-

man locomotor control system to perturbations [7]. In terms 

of locomotion, it quantifies how well an individual can keep 

steady walking patterns under perturbations in the environment 

or from him/herself, such as an uneven floor or different upper 

body movement. 

The traditional ways to assess stability parameters involve 

laboratory-based instruments, such as force plates and motion 

analysis systems. These instruments perform well in terms of 

offering high sampling rates, taking accurate measures, and 

providing easy-to-interpret data such as force, moment, posi-

tion, and velocity. However, even though these instruments 

could provide important information for employee selection 

and work load estimation, they often fail to work within the in-

dustrial settings simply because of their strict constraints to the 

environment, high cost, large size, and weight. As a result, it is 

natural that a miniature and cost effective device that can assess 

similar stability parameters would be much more accepted and 

welcomed by employers in reality. 

The inertial measurement units (IMUs), consisting of 

accelerometers, gyroscopes, magnetometers, etc., are devices 

which have been shown capable to take such role. Numerous 

motion studies have been conducted in utilizing IMUs for 

differentiating daily activities [8], measuring human energy 

expenditure [9], estimating spatio-temporal gait parameters [10], 

and assessing local dynamic stability [11]. To the best of  our 

knowledge, however, most of these studies concentrated on the 

clinical interpretations or health care solutions, whereas the 

possible applications in the realm of industrial safety are still 

not fully explored and addressed. Therefore, the current study 

was designed to investigate the feasibility of  utilizing IMU-

assessed standing and walking stability for fall risk evaluation in 

industrial safety designs. Further, it explored implementations 

with major requirements of low cost, fast to conduct, and easy 

to interpret. It was hypothesized that the standing and walking 

stability measures would be significantly different between fall-

prone groups and healthy groups.

Materials and Methods

Participants
Twelve subjects (4 young adults and 8 old adults), recruited 

from a large pool of  community dwelling individuals, par-

ticipated in this study. Old adults were categorized into two 

fall risk levels (healthy and fall prone) based upon their self-

reported occurrence of falling in the recent 6 months (at least 

one fall within the past 6 months). No history of falling was re-

ported from the young group, thus, all of the young adults were 

categorized as healthy. Table 1 summarizes the demographic 

information of the participants.

All of  the participants were screened following a medi-

cal history form to make sure they were in general physical 

health. The informed consent was reviewed by the Institutional 

Review Board and was obtained from each participant prior to 

data collection. 

Table 1. Participants’ demographic information

Group
Gender

Age (years) Weight (kg) Height (m)
Male Female

Healthy young 1 3 21.75 ± 0.96 64.07 ± 13.90 1.67 ± 0.09

Healthy old 2 2 73.25 ± 7.09 71.89 ± 23.14 1.71 ± 0.10

Fall prone old 2 2 74.50 ± 2.65 73.71 ± 12.49 1.73 ± 0.14

Values are presented as number or mean ± standard deviation.
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Apparatus and procedures
One force plate (BERTEC # K80102, Type 4550-08; Bertec 

Corporation, Columbus, OH, USA) was used to collect kinetic 

data at a sampling rate of  100 Hz in the quiet standing test. 

One tri-axial IMU (Motion Tractor X [MTx]; Xsens Technolo-

gies BV, Netherlands) was used to collect acceleration data 

at a sampling rate of  50 Hz. In terms of  the orientation per-

formance, the MTx has an angular resolution of 0.05o RMS, 

static accuracy of < 0.5o, and dynamic accuracy of < 1.0o. The 

dynamic ranges for the acceleration and angular velocity out-

puts are ±50 m/s2 (5 g) and ±1,200o/s, respectively [12]. For 

the quiet standing test, the IMU was attached at the lower back 

(i.e., L5/S1), as this location closely represents the whole body 

center of  mass. For the treadmill-walking test, the IMU was 

attached at the right ankle. This location was selected as being 

sensitive to changes in dynamic stability [7].

Participants were informed about the detailed procedures 

prior to the experiment. Written consent was obtained. Each 

participant was then provided with a short sleeve shirt, shorts, 

and a pair of athlete shoes, in order to minimize the interfer-

ence of clothing in data collection.

The first part of  the experiment was the quiet upright 

standing test. Participants stood on a linear walkway with a 

force plate underneath. They were instructed to finish three 

standing tasks: standing with feet open as they felt comfortable 

for three minutes, with feet put together for one minute, and 

with feet open but eyes closed for 10 seconds. These postures 

and periods were chosen because they were the specific tasks 

defined in the widely used Berg’s balance test [13]. 

The second part of  the experiment was the treadmill-

walking test. Participants were required to walk on a treadmill 

at their normal speed. A period of 2 minutes was given prior to 

the actual data collection for each of the participants in order 

to get familiar with treadmill walking. Once the data collection 

started, participants were instructed to walk continuously for 3 

minutes. 

A sufficient time of rest was provided to participants, par-

ticularly to the fall prone ones, between the two tests in order to 

minimize the interference of localized muscle fatigue. 

Data analysis
The postural stability was characterized by two means: the 

average velocity of  center of  pressure (COPv) measured by 

the force plate and the resultant acceleration (Acc) at the lower 

back measured by the IMU. The following formulas were used.
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where M and F were the moment and force measures 

from the force plate; A was the acceleration measure from the 

IMU; T was the overall measurement time; and subscripts x, y, 

and z represented the anterio-posterior (AP), medio-lateral, and 

vertical directions, respectively.

The dynamic stability was characterized by the one-gait-

step maxLE. The AP acceleration at the right ankle measured 

by the IMU was used to compute maxLE following the pub-

lished method [14]. Briefly, a time-delayed coordinate method 

was adopted to reconstruct a state space using AP acceleration 

data. Rosenstein’s algorithm was applied to calculate maxLE 

during the time period corresponding to the initial 100% gait 

cycle. Computations were performed in MATLAB R2007a 

(MathWorks Inc., Natick, MA, USA). 

Analysis of variance (ANOVA) was performed on COPv, Acc, 

and maxLE in order to investigate if  there was any significant 

difference between the two groups. A significance level of α = 

0.05 was selected. Each pair of group means was compared us-

ing the Student’s t test. 

Discriminant analysis was performed on COPv, Acc, 

maxLE as well as their combinations to select the parameters 

needed in the fall risk estimation. Linear discriminant model 

was used and the power of  discrimination was characterized 

as the actual number of participants being correctly classified. 

All of the statistical analyses were conducted in JMP 7.0 (SAS 

Institute, Cary, NC, USA).

Results

Data profiles
The stabilograms, which were composed by average velocities 

of COPv and accelerations at lower back (Acc) during stand-

ing, as well as the AP acceleration at the right ankle during 

walking, were demonstrated in Fig. 1.

Parameter differences between groups
Significant differences existed between the fall prone group and 

the healthy group in maxLE value, whereas all of  the other 

parameters (COPv and Acc in feet open, feet closed, and eyes 

closed tasks) did not show any significant difference between 

the groups. Fig. 2 and Table 2 summarize the results of  the 

ANOVA test. 
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Power of differentiation with uni-parameter versus 
multi-parameters
The maxLE perfectly measures the discriminated fall prone old 

group from the healthy group, yet, it misclassified half  of the 

healthy old and healthy young individuals. The overall percent 

of misclassification was 33.33%. With a secondary parameter, 

such as feet closed Acc (fcAcc), only one healthy old and one 

healthy young was misclassified. The overall percentage of mis-

classification decreased to 16.67%. The combination of more 

than two parameters did not generate better discrimination 

performance. Fig. 3 shows the receiver operating characteristic 

(ROC) curves of the suggested parameters used in the discrimi-

nant analysis.

Discussion

The exploration of fall risk assessment measures has been an 

important objective in locomotion study for many decades; yet, 

no assessment tools have been fully satisfactory [4]. As sug-

gested by some recent studies, however, local dynamic stability 

characterized by maxLE appeared to be a promising index in 

differentiating fall prone and healthy adults [7,14]. In addition, 

the current study demonstrated its capability and feasibility. 

The maxLE at the right ankle, computed in the current study, 

had an average value of  1.5545 and a standard deviation of 

0.0930, which fell in between the values of  the similar mea-

sures obtained by Dingwell et al. [15] and Liu et al. [7]. Despite 

the slightly different absolute values, which may be caused by 

measuring devices and computation options, the general trend 

was the same and agreed with the theoretical model; individu-

als with higher fall risk tend to have higher maxLE. 

Both the COPv and the Acc parameters during the stand-

ing test were not significantly different among groups. This was 

consistent with the findings of Kang and Dingwell [5], which 

suggested that mechanisms governing standing and walking 

stability were different. However, it was found in the current 

study that the group with lower walking stability also presented 

lower standing stability. Therefore, the involvement of standing 

Fig. 1. Data profiles in the standing and walking tests. (A) Stabilogram 
of center-of-pressure velocity (COPv). (B) Stabilogram of acceleration 
(Acc). (C) Anterio-posterior walking acceleration.
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stability measures in the discriminant model did improve the 

performance of the discrimination.

The change of task difficulty (i.e., change of postures or 

distortion of  sensory system) during the quiet upright stand-

ing test generated neither consistent effect on standing stability 

nor advantage in terms of differentiation. One possible reason 

was that the effect of difficulty confounded with participant’s 

concentration on the tasks during the test, i.e., some partici-

pants tend to be more cautious and concentrated during more 

demanding tasks (i.e., feet closed or eyes closed standing), and 

as a result, their performance did not degrade significantly. In 

order to investigate the effect of task difficulty in the future, an 

improved experimental design with repeated measures should 

be adopted. 

Several limitations existed in the current study. First, the 

result should be interpreted with caution due to the small sam-

ple size. Second, the performance of  treadmill walking may 

be different from the performance of the over ground walking 

in terms of dynamic stability [15], whereas the latter case was 

the one of our real interest. Future studies should recruit more 

individuals, specifically employees, such as construction work-

ers, for the actual over ground walking test, and also use multi 

IMUs (e.g., two IMUs attached at both ankles) to compare the 

assessments at different body land markers during the same 

task, which may provide a better understanding of the whole 

body stability and coordination. 

In conclusion, the current study investigated the feasibility 

of assessing postural and dynamic stability for fall risk estima-

Table 2. p-values of ANOVA test

Parameter p-value Parameter p-value

COPv feet open 0.1425 Acc feet open 0.1714

COPv feet close 0.0841 Acc feet close 0.3586

COPv eyes close 0.3575 Acc eyes close 0.1179

maxLE 0.0044* 

ANOVA: analysis of variance, COPv: center-of-pressure velocity, Acc: 
acceleration, maxLE: maximum Lyapunov exponent. 
*Significant difference.

Fig. 2. Group means and standard deviations of the stability parameters. COPv: center-of-pressure velocity, Acc: acceleration, maxLE: maximum 
Lyapunov exponent, FO: fall-prone old, HO: healthy old, HY: healthy young.
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tion by use of the IMUs. The results indicated that: 1) signifi-

cant differences existed between fall prone and healthy groups 

in the right ankle dynamic stability during walking; 2) it was 

not sufficient to differentiate healthy and fall prone individu-

als with only postural stability assessed by either lower back 

Acc or COPv method; and 3) the combination of postural and 

dynamic stability measures assessed by the IMU had better per-

formance in discriminating fall risk levels than any of the other 

individual measures. 

Three major applications may stem from the results. First, 

a non-intrusive and portable fall risk assessment tool can be de-

veloped for employee screening or evaluation, particularly for 

older employees. Second, flexible assignment, shift, or rest pol-

icy can be established based on the monitored stability decline 

due to fatigue. Lastly, stability assessed by IMU can be used as 

a validation measure to confirm the effectiveness of  mobility 

training programs designed and provided to employees for im-

proving their balance control. 
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