• Title/Summary/Keyword: Multi-Sensor

Search Result 2,035, Processing Time 0.032 seconds

Design and Implementation of the Active Multi-Agent Middleware for the Sensor Network Application (센서 네트워크 응용을 위한 능동적 다중 에이전트 미들웨어 설계 및 구현)

  • Lee, Yon-Sik;Jang, Min-Seok
    • The KIPS Transactions:PartA
    • /
    • v.18A no.4
    • /
    • pp.159-164
    • /
    • 2011
  • In this paper, we suggest the active multi-agent middleware for the sensor network application. For this, firstly we design and implement the active rule based mobile agent middleware. The mobile agent in the proposed system visits the destination sensor nodes according to the migration list offered by the meta table in the name space of the naming agent, acquires and transmits sensor data according to the purpose and needs through the active rules, and directly executes the actions corresponding to the optional events(changed sensor data and/or time etc.). And then, we show the potential applicability of the active rule based mobile agent middleware in various active sensor networks through the interaction with the rule base system and context database system.

Flooding Level Cluster-based Hierarchical Routing Algorithm For Improving Performance in Multi-Hop Wireless Sensor Networks (멀티홉 무선 센서 네트워크 환경에서 성능 향상을 위한 플러딩 레벨 클러스터 기반 계층적 라우팅 알고리즘)

  • Hong, Sung-Hwa;Kim, Byoung-Kug;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3B
    • /
    • pp.123-134
    • /
    • 2008
  • In this paper, a routing algorithm for wireless sensor networks is proposed to improve the efficiency of energy consumption in sensor nodes. Each sensor node has the value called ‘Flooding Level’ obtained through the initial flooding from a sink node instead of sending beacon messages in multi-hop sensor field. This value can be used for guaranteeing the sensor nodes to connect with a sink node and determining the roles of cluster-head and cluster-gateway node efficiently and simply during the clustering. If different algorithms are added to our protocol, it will work better in the side of energyefficiency. This algorithm is evaluated through analysis and extensive simulations.

Design and evaluation of wireless sensor network routing protocolfor home healthcare (홈 헬스케어를 위한 무선센서네트워크 라우팅 프로토콜 디자인 및 평가)

  • Lee, Seung-Chul;Seo, Yong-Su;Kwon, Tae-Ha;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • A home healthcare system based wireless sensor network, which can continuously monitor and manage the elderly's electrocardiogram(ECG) signal at any space at home without space limit is proposed. The communication coverage of wireless network is expended by multi-hop wireless sensor network. In order to send the elderly's ECG data wirelessly, a small size ECG sensor node was designed to forward the ECG data over multi-hop relay network. The packet acquired by mobile ECG node is transmitted through wireless intermediate nodes to base station for analyzing the packet reception rate. Modified minimum cost forwarding(MMCF) protocol and flooding protocol are designed and implemented to check the transmission efficiency of a packet in a wireless sensor network. The developed MMCF protocol shows an advantage of high reception rate by reduced network traffic.

Low Power Time Synchronization for Wireless Sensor Networks Using Density-Driven Scheduling

  • Lim, HoChul;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.84-92
    • /
    • 2018
  • For large wireless sensor networks running on battery power, the time synchronization of all sensor nodes is becoming a crucial task for waking up sensor nodes with exact timing and controlling transmission and reception timing. However, as network size increases, this synchronization process tends to require long processing time consume significant power. Furthermore, a naïve synchronization scheduler may leave some nodes unsynchronized. This paper proposes a power-efficient scheduling algorithm for time synchronization utilizing the notion of density, which is defined by the number of neighboring nodes within wireless range. The proposed scheduling algorithm elects a sequence of minimal reference nodes that can complete the synchronization with the smallest possible number of hops and lowest possible power consumption. Additionally, it ensures coverage of all sensor nodes utilizing a two-pass synchronization scheduling process. We implemented the proposed synchronization algorithm in a network simulator. Extensive simulation results demonstrate that the proposed algorithm can reduce the power consumption required for the periodic synchronization process by up to 40% for large sensor networks compared to a simplistic multi-hop synchronization method.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge

  • Ho, Duc-Duy;Lee, Po-Young;Nguyen, Khac-Duy;Hong, Dong-Soo;Lee, So-Young;Kim, Jeong-Tae;Shin, Sung-Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2012
  • In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

Efficiency Low-Power Signal Processing for Multi-Channel LiDAR Sensor-Based Vehicle Detection Platform (멀티채널 LiDAR 센서 기반 차량 검출 플랫폼을 위한 효율적인 저전력 신호처리 기법)

  • Chong, Taewon;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.977-985
    • /
    • 2021
  • The LiDAR sensor is attracting attention as a key sensor for autonomous driving vehicle. LiDAR sensor provides measured three-dimensional lengths within range using LASER. However, as much data is provided to the external system, it is difficult to process such data in an external system or processor of the vehicle. To resolve these issues, we develop integrated processing system for LiDAR sensor. The system is configured that client receives data from LiDAR sensor and processes data, server gathers data from clients and transmits integrated data in real-time. The test was carried out to ensure real-time processing of the system by changing the data acquisition, processing method and process driving method of process. As a result of the experiment, when receiving data from four LiDAR sensors, client and server process was operated using background or multi-core processing, the system response time of each client was about 13.2 ms and the server was about 12.6 ms.

Signal Processing of Guide Sensor based on Multi-Masking and Center of Gravity Method for Automatic Guided Vehicle (다중 마스킹과 무게중심법을 기반한 AGV용 가이드 센서 신호처리)

  • Lee, Byeong-Ro;Lee, Ju-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • The most important device of the AGV is the guide sensor, and the typical function of this sensor is high accuracy and extraction of the road. If the accuracy of the guide sensor is low or the sensor device is extracted the wrong track, this causes the problems such as the AGV collision, track-out, the load falling due to AGV swing. In order to improve these problems, this study is proposed a signal processing method of the guide sensor based on multi-maskings and the center of gravity method, and evaluated its performance. As a result, the proposed method showed that the mean error of absolute value is 2.32[mm] and it showed performance improvement of 27[%] than the center of gravity method of existence. Therefore, when the proposed signal processing method is applied, It is thought that the posture control and driving stability of the AGV will be improved.

A Low-Power Clustering Algorithm Based on Fixed Radio Wave Radius in Wireless Sensor Networks (무선센서네트워크에서 전파범위기반의 저 전력 클러스터링 알고리즘)

  • Li, Yong-Zhen;Jin, Shi-Mei;Rhee, Chung-Sei
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1098-1104
    • /
    • 2010
  • Recently, a variety of research of multi-hop routing protocol have been done to balance the sensor node energy consumption of WSN(wireless sensor network) and to improve the node efficiency for extending the life of the entire network. Especially in multi-hop protocol, a variety of models have been concerned to improve energy efficiency and apply in the reality. In multi-hop protocol, we assumption that energy consumption can be adjusted based on the distance between the sensor nodes. However, according to the physical property of the actual WSN, it's hard to establish this assumption. In this dissertation, we propose low-power sub-cluster protocol to improve the energy efficiency based on the spread of distance. Compared with the previous protocols, this proposed protocol can be effectively used in the wireless sensing networks.

Implementation of Environmental Information Monitoring System using Multi-Query Indexing Technique and Wireless Sensor (다중 질의 색인기법과 무선 센서를 이용한 환경정보 모니터링 시스템 구현)

  • Kim, Jung-Yee;Lee, Kang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.307-312
    • /
    • 2007
  • Wireless Sensor Network(WSN) is considered as a core technology necessary for Ubiquitous computing, with its numerous possible applications in many practical areas, is being researched and studied actively by many around the world. WSN utilizes wireless sensors spatially placed to gather information regarding temperature, light condition, motion and change in speed of the objects within their surrounding environment. This paper implements an environmental information monitoring and indexing system based on spatial indexing technique by constructing a WSN system. This Multi-Query Indexing Technique coupled with wireless sensors provides an output based on the pre-defined built-in data index and new input from the sensors. If environment data is occured, system have to perform a proper action after collecting and analyzing this data. This is the purpose of implementing environment data monitoring system. We constructed environmental application using TinyOS and built tested with MICAz sensor bords. We designed and implemented a monitoring system which detects and multi-indexing process environmental data from distributed sensors.

  • PDF