• Title/Summary/Keyword: Multi-Parameters

Search Result 2,641, Processing Time 0.029 seconds

Novel Raman Fiber Laser and Fiber-Optic Sensors Using Multi-Channel Fiber Gratings

  • Han, Young-Geun;Kim, Sang-Hyuck;Lee, Sang-Bae;Kim, Chang-Seok;Kang, Jin-U.;Paek, Un-Chul;Chung, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • The transmission characteristics of multi-channel long period fiber gratings (LPFGs) in terms of the physical parameters like the separation distance, grating length and number of gratings will be discussed. Their transmission characteristics such as channel spacing, number of channels, loss peak depth, and channel bandwidth can be easily controlled by physical parameters. Based on the experimental results, their applications to optical multiwavelength Raman lasers and optical sensors will be investigated. A multiwavelength Raman fiber ring laser with 9 WDM channels with 100 ㎓ spacing and 19 channels with 50 ㎓ spacing using tunable multi-channel LPFGs will be experimentally demonstrated. The fiber-optic sensing applications with high resolution and sensitivity based on multi-channel LPFGs will be also presented.

Multi-objective geometry optimization of composite sandwich shielding structure subjected to underwater shock waves

  • Zhou, Hao;Guo, Rui;Jiang, Wei;Liu, Rongzhong;Song, Pu
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.211-224
    • /
    • 2022
  • Multi-objective optimization was conducted to obtain the optimal configuration of a composite sandwich structure with honeycomb-foam hybrid core subjected to underwater shock waves, which can fulfill the demand for light weight and energy efficient design of structures against underwater blast. Effects of structural parameters on the dynamic response of the sandwich structures subjected to underwater shock waves were analyzed numerically, from which the correlations of different parameters to the dynamic response were determined. Multi-objective optimization of the structure subjected to underwater shock waves of which the initial pressure is 30 MPa was conducted based on surrogate modelling method and genetic algorithm. Moreover, optimization results of the sandwich structure subjected to underwater shock waves with different initial pressures were compared. The research can guide the optimal design of composite sandwich structures subjected to underwater shock waves.

Requirements of processing parameters for Multi-Satellites SAR Data Focusing Software

  • Kwak Sunghee;Kim Kwang Yong;Lee Young-Ran;Shin Dongseok;Jeong Soo;Kim Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.401-404
    • /
    • 2004
  • SAR (Synthetic Aperture Radar) signal data need a focusing procedure to make the information available to the user. In recent SAR systems, various sensing modes and mission operations are applied to acquire high-resolution SAR images. Therefore, in order to develop generalized focusing software for multi-satellites, a regularized parameter configuration that sufficiently represents sensor and platform characteristics of the SAR system is required. The objective of this paper is to introduce the consideration of parameter definition for developing a generalized SAR processor and to discuss the flexibility and extensibility of defined parameters. The proposed parameter configuration can be applied to a SAR processor. Experiments based on real data will show the suitability of the suggested processing parameters.

  • PDF

Design of multi-layered surface plasmon resonance sensors using optical admittance method and evolution algorithm (광학 어드미턴스 기법과 진화 알고리즘 기법을 이용한 다층 표면 플라즈몬 공명 센서의 설계)

  • Jung, Jae-Hoon;Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.402-408
    • /
    • 2005
  • This paper describes the optimal design of a multi-layered surface plasmon resonance sensors to meet various specifications and improve some physical parameters. Dip 3 dB bandwidth and depth were chosen as design parameters and the objective function was the norm of the difference between design parameters and target values. The design variables are thicknesses of each layer and to obtain the design parameters, the optical admittance method was employed. The (1+1) evolution strategy was employed as an optimization tool. By applying the proposed optimization procedure to a 3-layered sensor, the optimized design variables considerably improved the 3 dB bandwidth by 4.8 nm and the dip depth by 1.1 dB.

Nonlinear viscous material model

  • Ivica Kozar;Ivana Ban;Ivan Zambon
    • Coupled systems mechanics
    • /
    • v.12 no.5
    • /
    • pp.419-428
    • /
    • 2023
  • We have developed a model for estimating the parameters of viscous materials from indirect tensile tests for asphalt. This is a simple Burger nonlinear rheological two-cell model or standard model. At the same time, we begin to develop a more versatile and complex multi-cell model. The simple model is validated using experimental load-displacement results from laboratory tests: The recorded displacements are used as input values and the measured force data are simulated with the model. The optimal model parameters are estimated using the Levenberg-Marquardt method and a very good agreement between the experimental results and the model calculations is shown. However, not all parts of the model are active in the loading phase of the experiment, so we extended the validation of the model to the simulation of the relaxation behaviour. In this stage, the other model parameters are activated and the simulation results are consistent with the literature. At this stage, we have estimated the parameters only for the two-cell uniaxial model, but further work will include results for the multi-cell model.

Multi-objective Optimization of Fuzzy System Using Membership Functions Defined by Normed Method (노음방법에 의해 정의된 소속함수를 사용한 퍼지계의 다목적 최적설계)

  • 이준배;이병채
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1898-1909
    • /
    • 1993
  • In this paper, a convenient scheme for solving multi-objective optimization problems including fuzzy information in both objective functions and constraints is presented. At first, a multi-objective problem is converted into single objective problem based on the norm method, and a merbership function is constructed by selecting its type and providing the parameters defined by the norm method. Finally, this fuzzy programming problem is converted into an ordinary optimization problem which can be solved by usual nonlinear programming techniques. With this scheme, a designer can conveniently obtain pareto optimal solutions of a fuzzy system only by providing some parameters corresponding to the importance of the objectiv functions. Proposed scheme is simple and efficient in treating multi-objective fuzzy systems compared with and method by with membership function value is provided interactively. To show the validity of the scheme, a simple 3-bar truss example and optimal cutting problem are solved, and the results show that the scheme is very useful and easy to treat multi-objective fuzzy systems.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

Design and Implementation of a Polar Transmitter (폴라송신기의 설계 및 구현)

  • Kang, Sanggee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.55-59
    • /
    • 2014
  • Multi-band and multi-mode transmitters are needed for SDR and CR. Recently many types of polar transmitters have been studied in order to implement a multi-band and multi-mode transmitter. Polar transmitters have many advantages, such as a simple structure, high efficiency and etc. In this paper we consider the number of D/A bit and the effects of a delay mismatch as design parameters for implementing polar transmitters. From the simulation we know that a 10 bit D/A is sufficient and a delay mismatch must be maintained small than 1/64 chip for satisfying the spectrum mask characteristics. We implement a polar transmitter based on the design parameters and the measured output signal meet the spectrum mask of 800MHz CDMA.

Development of Multi Effect Distillation for Solar Thermal Seawater Desalination System (태양열 해수담수화 시스템을 위한 다중효용 담수기 개발)

  • Joo, Hong-Jin;Hwang, In-Seon;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3$/day capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3$/hour sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8\;m^3$/hour for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3$/day of fresh water. Based on the results of this study, It makes possible to secure economics of desalination system with solar energy which is basically needed development of high efficiency fresh water generator.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.