Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.2.211

Multi-objective geometry optimization of composite sandwich shielding structure subjected to underwater shock waves  

Zhou, Hao (National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology)
Guo, Rui (School of Mechanical Engineering, Nanjing University of Science and Technology)
Jiang, Wei (National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology)
Liu, Rongzhong (School of Mechanical Engineering, Nanjing University of Science and Technology)
Song, Pu (Xi'an Modern Chemistry Research Institute)
Publication Information
Steel and Composite Structures / v.44, no.2, 2022 , pp. 211-224 More about this Journal
Abstract
Multi-objective optimization was conducted to obtain the optimal configuration of a composite sandwich structure with honeycomb-foam hybrid core subjected to underwater shock waves, which can fulfill the demand for light weight and energy efficient design of structures against underwater blast. Effects of structural parameters on the dynamic response of the sandwich structures subjected to underwater shock waves were analyzed numerically, from which the correlations of different parameters to the dynamic response were determined. Multi-objective optimization of the structure subjected to underwater shock waves of which the initial pressure is 30 MPa was conducted based on surrogate modelling method and genetic algorithm. Moreover, optimization results of the sandwich structure subjected to underwater shock waves with different initial pressures were compared. The research can guide the optimal design of composite sandwich structures subjected to underwater shock waves.
Keywords
composite sandwich structures; multi-objective optimization; numerical simulation; surrogate model; underwater shock waves;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Huang, H., Yang, X., Yan, Q., Xiang, Z. and Xu, S. (2022), "Crashworthiness analysis and multiobjective optimization of bio-inspired sandwich structure under impact load", Thin-Wall. Struct., 172, 108840. https://doi.org/10.1016/j.tws.2021.108840.   DOI
2 Fazilati, J. and Alisadeghi, M. (2016), "Multiobjective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact", Thin-Wall. Struct., 107, 197-206. https://doi.org/10.1016/j.tws.2016.06.008.   DOI
3 Hashin, Z. (1980), "Failure criteria for unidirectional fiber composites", J. Appl. Mech. 47, 329-334. https://doi:10.1115/1.3153664.   DOI
4 Chen, Y., Fu, K., Hou, S., Han, X. and Ye, L. (2018), "Multiobjective optimization for designing a composite sandwich structure under normal and 45° impact loadings", Compos. Part. B. Eng., 142, 159-170. https://doi.org/10.1007/s00158-017-1674-8.   DOI
5 Deshpande, V.S and Fleck, N.A. (2001), "Multi-axial yield behaviour of polymer foams", Acta Mater., 49 (10), 1859-1866. https://doi.org/10.1016/S1359-6454(01)00058-1.   DOI
6 Huang, W., Lu, L., Fan, Z., Zhang, W., Liu, J. and Yin, C. (2021), "Underwater impulsive resistance of the foam reinforced composite lattice sandwich structure", Thin-Wall. Struct., 166, 108120. https://doi.org/10.1016/j.tws.2021.108120.   DOI
7 Malllick, M., Chakrabarty, A. and Khutia, N. (2022), "Genetic algorithm based design optimization of crashworthy honeycomb sandwiched panels of AA7075-T651 aluminium alloy for aerospace applications", Mater. Today. Proc., 54, 690-696. https://doi.org/10.1016/j.matpr.2021.10.388.   DOI
8 McShane, G.J., Deshpande, V.S. and Fleck, N.A. (2007), "The underwater blast resistance of metallic sandwich beams with prismatic lattice cores", J. Appl. Mech., 74, 352-364. https://doi.org/10.1115/1.2198549.   DOI
9 Box, G.E.P. and Wilson, K.B. (1951), "On the experimental attainment of optimum conditions", J. R. Stat. Soc. Ser. B., 13(1), 1-45. https://doi.org/ 10.1007/978-1-4612-4380-9_23.   DOI
10 Fleck, N.A. and Deshpande, V.S. (2004), "The Resistance of clamped sandwich beams to shock loading", J. Appl. Mech., 71, 386. https://doi.org/10.1115/1.1629109.   DOI
11 Hussein, R.D., Ruan, D., Lu, G.X., Guillow, S. and Yoon, J.W. (2017), "Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb", Thin- Wall. Struct., 110, 140-154. https://doi.org/10.1016/j.tws.2016.10.023.   DOI
12 Kalita, K., Dey, P., Joshi, M. and Haldar, S. (2019), "A response surface modelling approach for multi-objective optimization of composite plates", Steel. Compos. Struct., 32(4), 455-466. https://doi.org/10.12989/scs.2019.32.4.455.   DOI
13 Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On Latin Hypercube Sampling for structural reliability analysis", Struct. Saf., 25 (1), 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5.   DOI
14 Liu, Q., Fu, J., Wang, J.S., Ma, J.B., Chen, H., Li, Q. and Hui, D. (2017), "Axial and lateral crushing responses of aluminum honeycombs filled with EPP foam", Compos. Part B Eng., 130, 236-247. https://doi.org/10.1016/j.compositesb.2017.07.041.   DOI
15 Mei, J., Liu, J. and Huang, W. (2022), "Three-point bending behaviors of the foam-filled CFRP X-core sandwich panel: Experimental investigation and analytical modelling", Compos. Struct., 284, 115206. https://doi.org/10.1016/j.compstruct.2022.115206.   DOI
16 Mozafari, H., Molatefi, H., Crupi, V., Epasto, G. and Guglielmino, E. (2015), "In plane compressive response and crushing of foam filled aluminum honeycombs", J. Compos. Mater., 49(26), 3215-3228. https://doi.org/10.1177/0021998314561069.   DOI
17 Ren, P., Ding C., Liu, Y., Ye, R., Wu, J., Ma, Y., Zhao, W. and Zhang, W. (2020), "Dynamic response and failure of carbon/epoxy composite sandwich subjected to underwater impulsive loading", Int. J. Impact. Eng., 143, 103614. https://doi.org/10.1016/j.ijimpeng.2020.103614.   DOI
18 Taghipoor, H. and Noori, M.D. (2018), "Experimental and numerical study on energy absorption of lattice-core sandwich beam", Steel Compos. Struct., 27(2), 135-147. https://doi.org/10.12989/scs.2018.27.2.135.   DOI
19 Rolfe. E., Quinn. R., Irven. G., Brick. D., Dear. J.P. and Arora. Hari. (2020), "Underwater blast loading of partially submerged sandwich composite materials in relation to air blast loading response", Int. J. Lightweight Mater. Manuf., 3, 387-402. https://doi.org/10.1016/j.ijlmm.2020.06.003.   DOI
20 Taghipoor, H., Eyvazian, A., Musharavat,i F. Sebaey, T.A. and Ghiaskar, A. (2020), "Experimental investigation of the threepoint bending properties of sandwich beams with polyurethane foam-filled lattice cores", Struct., 28, 424-432. https://doi.org/10.1016/j.istruc.2020.08.082.   DOI
21 Tilbrook, M.T., Deshpande, V.S. and Fleck, N.A. (2009), "Underwater blast loading of sandwich beams: Regimes of behaviour", Int. J. Solids. Struc.t, 46, 32089-3221. https://doi.org/10.1016/j.ijsolstr.2009.04.012.   DOI
22 Zhang, Y.Q., Liu, Q., He, Z.H. Zong, Z.J. and Fang, J.G. (2019), "Dynamic impact response of aluminum honeycombs filled with Expanded Polypropylene foam", Compos. Part B Eng., 156, 17-27. https://doi.org/10.1016/j.compositesb.2018.08.043.   DOI
23 Zhou, H., Liu, T., Guo, R., Liu, R. and Song, P. (2019), "Numerical investigation on water blast response of freestanding carbon fiber reinforced composite sandwich plates with square honeycomb cores", Appl. Compos. Mater., 26, 605-625. https://doi.org/10.1007/s10443-018-9737-6.   DOI
24 Tian, A., Yao, P., Zou, J., Liu, K. and Ye, R. (2022), "Crashworthiness optimization method for sandwich plate structure under impact loading", Ocean Eng., 250, 110870. https://doi.org/10.1016/j.oceaneng.2022.1108 70.   DOI
25 Cheng, Y., Liu, M., Zhang, P., Xiao, W., Zhang, C., Liu, J. and Hou, H. (2018), "The effects of foam filling on the dynamic response of metallic corrugated core sandwich panel under air blast loading-Experimental investigations", Int. J. Mech. Sci., 145, 378-388. https://doi.org/10.1016/j.ijmecsci.2018.07.030.   DOI
26 Deng, X. and Liu, W. (2019), "Multi-objective optimization of thin-walled sandwich tubes with lateral corrugated tubes in the middle for energy absorption", Thin-Wall. Struct., 137, 303-317. https://doi.org/10.1016/j.tws.2018.12.040.   DOI
27 Djamaluddin, F., Abdullah, S., Ariffin, A.K. and Nopiah, Z.M. (2015), "Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions", Thin-Wall. Struct., 87, 1-11. https://doi.org/10.1016/j.tws.2014.10.015.   DOI
28 Morris, M.D. and Mitchel,l T.J. (1995), "Exploratory designs for computational experiments", J. Stat. Plan. Inference., 43(3), 381-402. https://doi.org/10.1016/0378-3758(94)00035-T.   DOI
29 Reddy, T.Y. and Wall, R.J. (1988), "Axial compression of foamfilled thin-walled circular tubes", Int. J. Impact Eng., 7, 151-166. https://doi.org/10.1016/0734-743X(88)90023-1.   DOI
30 Sun, G., Li, G., Zhou, S., Li, H., Hou, S. and Li, Q. (2011), "Crashworthiness design of vehicle by using multiobjective robust optimization", Struct. Multidiscip. Optim., 44, 99-110. https://doi.org/10.1007/s00158-010-0601-z.   DOI
31 Zhou, H., Guo, R., Bao, K., Wei, H.Y. and Liu, R.Z. (2019), "Energy absorption investigation of square CFRP honeycomb reinforced by PMI foam fillers under quasi-static compressive load", Steel. Compos. Struct., 33, 837-847. https://doi.org/10.12989/scs.2019.33.6.837.   DOI