• Title/Summary/Keyword: Multi-Parameters

Search Result 2,658, Processing Time 0.032 seconds

A Study on the Optimum Design of Multi-Object Dynamic System for the Rail Vehicle (철도차량 동적 진동특성을 고려한 다목적함수 최적설계)

  • Park, Chan-Kyoung;Lee, Kwang-Ki;Kim, Ki-Hwan;Hyun, Seung-Ho;Park, Choon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.894-899
    • /
    • 2000
  • Optimization of 26 design variables selected from suspension characteristics for Korean High Speed Train (KHST) is performed according to the minimization of 58 responses which represent running safety and ride comfort for KHST and analyzed by using the each response surface model from stochastic design experiments. Sensitivity of design variables is also analyzed through the response surface model which ineffective design prameters to the performance index are screened by using stepwise regression method. The response surface models are used for optimizing design variables through simplex algorism. Values of performance index simulated by optimized design parameters are totally lower than those by initial design parameters. It shows that this method is effective for optimizing multi-design variables to multi-object function.

  • PDF

Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section (회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

Coverage and Capacity Analysis for the Multi-layer CDMA Macro/Indoor-Pico Cell (중첩 설치된 CDMA 매크로/옥내 피코셀의 영역 및 용량 분석)

  • 최승욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.10B
    • /
    • pp.1641-1647
    • /
    • 2000
  • This paper presents an analysis of coverage and capacity for the multi-layer CDMA cellular system. The multi-layer CDMA system that shares a common frequency band consists of macrocells for outdoor users and picocells for indoor users. Though macrocells and picocells interfere with each other the capacity of the whole system can be increased, We have analyzed the effect of muual interference upon cell coverage soft handover areas and capacities. The parameters involved in the engineering of the system are discussed. The study results sow that we can control the service coverage of indoor picocells with the system parameters set properly. It is also show that the capacity of the whole system that the capacity of the whole system can be enhanced smoothly by deploying the indoor picocells within existing macrocells.

  • PDF

Novel Islanding Detection Method for Distributed PV Systems with Multi-Inverters

  • Cao, Dufeng;Wang, Yi;Sun, Zhenao;Wang, Yibo;Xu, Honghua
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1141-1151
    • /
    • 2016
  • This study proposes a novel islanding detection method for distributed photovoltaic (PV) systems with multi-inverters based on a combination of the power line carrier communication and Sandia frequency shift islanding detection methods. A parameter design method is provided for the novel scheme. On the basis of the designed parameters, the effect of frequency measurement errors and grid line impedance on the islanding detection performance of PV systems is analyzed. Experimental results show that the theoretical analysis is correct and that the novel method with the designed parameters has little effect on the power quality of the inverter output current. Non-detection zones are not observed, and a high degree of reliability is achieved. Moreover, the proposed islanding detection method is suitable for distributed PV systems with multi-inverters.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

CTF/DYN3D multi-scale coupled simulation of a rod ejection transient on the NURESIM platform

  • Perin, Yann;Velkov, Kiril
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1339-1345
    • /
    • 2017
  • In the framework of the EU funded project NURESAFE, the subchannel code CTF and the neutronics code DYN3D were integrated and coupled on the NURESIM platform. The developments achieved during this 3-year project include assembly-level and pin-by-pin multiphysics thermal hydraulics/neutron kinetics coupling. In order to test this coupling, a PWR rod ejection transient was simulated on a MOX/UOX minicore. The transient is simulated using two different models of the minicore. In the first simulation, both codes model the core with an assembly-wise resolution. In the second simulation, a pin-by-pin fuel-centered model is used in CTF for the central assembly, and a pin power reconstruction method is applied in DYN3D. The analysis shows the influence of the different models on global parameters, such as the power and the average fuel temperature, but also on local parameters such as the maximum fuel temperature.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

Num Worker Tuner: An Automated Spawn Parameter Tuner for Multi-Processing DataLoaders

  • Synn, DoangJoo;Kim, JongKook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.446-448
    • /
    • 2021
  • In training a deep learning model, it is crucial to tune various hyperparameters and gain speed and accuracy. While hyperparameters that mathematically induce convergence impact training speed, system parameters that affect host-to-device transfer are also crucial. Therefore, it is important to properly tune and select parameters that influence the data loader as a system parameter in overall time acceleration. We propose an automated framework called Num Worker Tuner (NWT) to address this problem. This method finds the appropriate number of multi-processing subprocesses through the search space and accelerates the learning through the number of subprocesses. Furthermore, this method allows memory efficiency and speed-up by tuning the system-dependent parameter, the number of multi-process spawns.

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF