
Num Worker Tuner: An Automated Spawn Parameter

Tuner for Multi-Processing DataLoaders

DoangJoo Synn*, JongKook Kim*1

*Dept. of Electrical Engineering, Korea University

Abstract

In training a deep learning model, it is crucial to tune various hyperparameters and gain speed and

accuracy. While hyperparameters that mathematically induce convergence impact training speed, sys-

tem parameters that affect host-to-device transfer are also crucial. Therefore, it is important to properly

tune and select parameters that influence the data loader as a system parameter in overall time accelera-

tion. We propose an automated framework called Num Worker Tuner (NWT) to address this problem.

This method finds the appropriate number of multi-processing subprocesses through the search space

and accelerates the learning through the number of subprocesses. Furthermore, this method allows

memory efficiency and speed-up by tuning the system-dependent parameter, the number of multi-

process spawns.

1 Corresponding author

1. Introduction

Modern computing architectures use multi-cores and mul-

ti-GPUs, revealing the characteristics of a distributed system

within one system. Due to this characteristic, various distrib-

uted system topologies are widely used to train deep learning

models. For example, in multi-node learning, large models

are trained using thousands of nodes. Thus, various technics

such as learning large-sized batches and large-sized models

were introduced [1].

In this process, modern deep learning frameworks actively

utilize data loaders through multi-process or multi-thread

spawn in serving data to devices. (e.g. PyTorch [2], Tensor-

flow [3]) A multi-stream data loader controls the number of

data loader processes and serves data to multiple nodes

through a dataloader node. As a default, the dataloader is

implemented by loading and allocating data to the main pro-

cess. However, in a distributed deep learning framework,

performing speed optimization through an appropriate num-

ber of data loader processes is not only affected by the da-

taset but also the number of CPU cores and number of CPU

cores as system-dependent parameters. In addition, it is af-

fected by various factors such as clock speed, RAM size,

GPU FLOPS, and GRAM size. Loading the data existing on

the disk may significantly correlate on disk I/O depending on

the type of data. Memory I/O affects the speed at which

loaded data is put into memory. With a large number of mul-

ti-process spawns, each dataloader process will take up more

than the proper amount of memory because it is holding the

dataset. Therefore, memory efficiency is degraded.

This paper proposes the Num Worker Tuner (NWT). NWT

provides a way to find an appropriate number of dataloaders

through the search space and utilize them as machine-

dependent parameters. Through this method, it is possible to

automate and control the multi-process spawn of the data

loader as a parameter, and it is possible to obtain memory

efficiency and speed simultaneously.

2. Related Works

2.1 Multi-Processing in DataLoader

Due to the language design, multithreading in Python is

extremely cumbersome and not recommended. The Global

Interpreter Lock (GIL) prevents fully parallelizing Python

code between threads within the Python process. [4] Multi-

Process dataloader sets the num_workers argument to a posi-

tive integer and provides an easy switch to perform multi-

process data loads to avoid blocking computation with data

loads.

In general, the dataloader spawns a num_workers worker

process whenever its iterator is created. Each worker receives

a set of initialization arguments with a location for data

fetching. This means that dataset access with disk I/O, trans-

form (e.g., collate function) is executed in the worker process.

Finally, the worker terminates when the iterator is garbage

collected or the task is done.

2.2 Automatic Memory Pinning

Data transfer from CPU to GPU uses hardware-dependent

APIs. Currently, hardware vendors provide various tech-

niques to optimize data transfer to GPU. For example, one of

the prominent vendors, NVIDIA, optimizes host-to-device

data transfer with Pinned Memory. [5]

However, at this point, GPU does not have direct access to

data in pageable host memory. Therefore, when the data

transfer is executed from pageable host memory to GPU

memory, the CUDA driver first allocates a temporary page

lock or pinned host array and copies it. Hence, it allows data

transfer from host to device memory as a fixed array.

ACK 2021 학술발표대회 논문집 (28권 2호)

- 446 -

Pinned memory is used as a staging area for transfers from

the device to the host. Programmers can directly allocate host

arrays in pinned memory to avoid transfer costs between

pageable and pinned host arrays. Pinned Memory data trans-

fer can be enabled through CUDA C/C++ or CUDA Python

API, and various frameworks support this.

Fig 1. Pageable Data Transfer versus Pinned Data Transfer

3. Num Worker Tuner (NWT)

 Num Worker Tuner (NWT) is a framework that finds the

appropriate number of multiprocessing subprocesses for

dataloaders through greedy search, considering the character-

istics of the dataset and hardware dependencies. Thus, it

holds the same designated result for a single dataset combi-

nation and hardware dependency. Furthermore, even if there

are various datasets, the result can be re-used if the transmit-

ted size is similar.

3.1 Parameters

NWT calls up to N-1 search spaces for subprocess in pro-

portion to the number of CPUs (N). Thus, if N processes are

allocated to CPU cores, context switching between the pro-

cesses will degrade the overall performance. Also, NWT ig-

nores differences lower than the alpha value in the minimum

execution time based on performance. Thus, insignificant

performance gains can be controlled through alpha and track

the best memory optimization. Finally, the iteration parame-

ter performs a data transfer loop based on pre-defined op-

tions. The default value for iteration is 100, which measures

the transfer time and converts it to an average used to meas-

ure performance.

Parameter Role Default

alpha
Ignoring differences within a

certain range (seconds)
0.5

N Maximum value of search space #cores

iteration Number of loops to accumulate 100

Table 1. Parameters to Tune for NWT

3.2 NWT

NWT starts with the main process, spawns subprocesses

up to N, and sequentially measures the data transfer cost.

Then, it iterates by time spent, tracking best times. At this

time, NWT tracks the memory usage of the entire system.

Finally, based on the measurement results, the number of

subprocesses of the dataloader with minimum overhead is

determined and used as a system-wide parameter.

Fig 2. Algorithm for NWT

4. Experiments

4.1 Experimental Setup

The experiment was performed on the Ubuntu 20.04 oper-

ating system with AMD Ryzen Threadripper 3970X 32-Core

Processor for CPU, DDR5 128GB for RAM, and 4x Nvidia

Geforce RTX A100. We used CUDA (Compute Unified De-

vice Architecture) 11.1, a GPU parallel computing frame-

work, and PyTorch 1.11.1 nightly. All the experiments were

performed with the GPU Pinned Memory option turned on as

a default.

We used CIFAR-10 as the dataset for the experiment.

CIFAR-10 is an image classification dataset with dimensions

of 60000x32x32 and was verified using the standard data

batch size 128 recommended for MobileNetV2 and ResNet

through CIFAR10 in PyTorch.

We used traced malloc to track memory usage. Traced

malloc emits current and peak usage of the memory for spec-

ified bound of the code. Since the current usage from traced

malloc does not reflect the memory usage removed by gar-

bage collection, the memory usage was tracked through the

peak memory usage.

4.2 Experimental Result

of Subpro-

cesses

Data Transfer Time

(Normalized, second)

Memory Usage

(MB)

0 (default) 14.25 2757.84

14(optimal) 1.49 2025.32

16(time best) 1.41 2055.37

32 1.55 2275.36

63 2.21 2773.60

Table 2. Experimental Result over

number of processes (selected)

Table 2 shows the memory usage and data transfer time

for the number of subprocesses in the CIFAR10 dataset. In

ACK 2021 학술발표대회 논문집 (28권 2호)

- 447 -

this case, using the normalization factor is for the calculation

with accumulated value during 100 iterations. Thus, the nor-

malization value is expressed as the time required per actual

data transfer.

When data exists only in the main process, num of work-

ers 0, data fetching is performed in the same process which

the dataLoader is initialized. Therefore, computing may be

blocked in data loading by Python's Global Interpreter Lock

(GIL). However, this mode may be preferred if the resources

used to share data between processes (e.g., shared memory,

file descriptors) are limited or if the entire dataset is small

and fully loaded into memory. Due to this property, the result

shows that memory usage for num_worker 0 is more signifi-

cant than that of the multi-processing dataloader.

Fig 2. Data Transfer Time over

the number of Dataloader Subprocesses

 As the number of processes increases, the result shows

that it becomes slower when the number of workers increases

than the time best of 16 through inter-process communication

overhead, including overhead on the operating system. Ac-

cordingly, it is crucial to find out the specific number of pro-

cesses. Also, based on the AMD Ryzen Threadripper 3970X

32-Core Processor in the experimental environment, simply

allocating 16 processes means allocating 17 processes, in-

cluding the main process. Therefore, the experimental results

show that picking the appropriate number of processes based

on the number of cores may not be suitable.

Fig 3. shows the result on memory usage. It can be derived

from the normalization and alpha (default 0.5) that the differ-

ence between N 14 and 16 is less than 0.005 per epoch.

Therefore, it is possible to get the optimal value that appro-

priately responds to the linearly increasing memory usage

without significantly affecting the data loading speed. From

the experimental results, it takes 1.49 seconds for 14 and

1.41 seconds for 16 subprocesses. From the given alpha, the

difference between 14 and 16 subprocesses is insignificant at

this time. Furthermore, memory usage is linearly increasing

when a multiprocessing dataloader is a number greater than 2.

Consequently, the NWT can derive 14 as the optimal value

for subprocesses spawn and pass it on to the training algo-

rithm.

Fig 3. Memory Usage(MB) over Number of Dataloader

Subprocesses

5. Conclusion

In this paper, we propose NWT(Num Worker Tuner), an

automated framework to tune the number of subprocesses

spawns for multi-processing dataloader.

NWT searches the optimal value for high-speed data

transfer from CPU to GPU with corresponding data sizes and

serves them as a system-wide parameter.

NWT benefits several situations, such as 1) training a large

model on distributed frameworks, 2) training with a higher

speed across the single machine with multi-GPUs with corre-

sponding dataloader processes.

Acknowledgement

 This research was supported by Basic Science Research

Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education(NRF-

2016R1D1A1B04933156) This work was supported in part

by the National Re- search Foundation of Korea (NRF)

through the Basic Science Research Program funded by the

Ministry of Education under Grant 2014R1A1A2059527,

and in part by the Information Technology Research Center

(ITRC), Ministry of Science and ICT (MSIT), South Korea,

through a Support Program under Grant IITP-2020-2018-0-

01433, supervised by the Institute for Infor- mation and

Communications Technology Promotion (IITP)

Reference

[1] You, Y., Gitman, I., & Ginsburg, B. (2017). Large Batch

Training of Convolutional Networks. arXiv: Computer

Vision and Pattern Recognition.

[2] PyTorch “https://pytorch.org/docs/stable/data.html”

[3] Tensorflow

“https://www.tensorflow.org/api_docs/python/tf/data”

[4] Python Global Interpreter Lock

“https://docs.python.org/3/library/multiprocessing.html”

[5] NVIDIA, Optimize Data Transfers in CUDA C/C++

“https://github.com/NVIDIA-developer-blog/code-

samples/blob/master/series/cuda-cpp/optimize-data-

transfers/profile.cu”

ACK 2021 학술발표대회 논문집 (28권 2호)

- 448 -

