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Abstract 

In training a deep learning model, it is crucial to tune various hyperparameters and gain speed and 

accuracy. While hyperparameters that mathematically induce convergence impact training speed, sys-

tem parameters that affect host-to-device transfer are also crucial. Therefore, it is important to properly 

tune and select parameters that influence the data loader as a system parameter in overall time accelera-

tion. We propose an automated framework called Num Worker Tuner (NWT) to address this problem. 

This method finds the appropriate number of multi-processing subprocesses through the search space 

and accelerates the learning through the number of subprocesses. Furthermore, this method allows 

memory efficiency and speed-up by tuning the system-dependent parameter, the number of multi-

process spawns. 
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1. Introduction 

Modern computing architectures use multi-cores and mul-

ti-GPUs, revealing the characteristics of a distributed system 

within one system. Due to this characteristic, various distrib-

uted system topologies are widely used to train deep learning 

models. For example, in multi-node learning, large models 

are trained using thousands of nodes. Thus, various technics 

such as learning large-sized batches and large-sized models 

were introduced [1]. 

In this process, modern deep learning frameworks actively 

utilize data loaders through multi-process or multi-thread 

spawn in serving data to devices. (e.g. PyTorch [2], Tensor-

flow [3]) A multi-stream data loader controls the number of 

data loader processes and serves data to multiple nodes 

through a dataloader node. As a default, the dataloader is 

implemented by loading and allocating data to the main pro-

cess. However, in a distributed deep learning framework, 

performing speed optimization through an appropriate num-

ber of data loader processes is not only affected by the da-

taset but also the number of CPU cores and number of CPU 

cores as system-dependent parameters. In addition, it is af-

fected by various factors such as clock speed, RAM size, 

GPU FLOPS, and GRAM size. Loading the data existing on 

the disk may significantly correlate on disk I/O depending on 

the type of data. Memory I/O affects the speed at which 

loaded data is put into memory. With a large number of mul-

ti-process spawns, each dataloader process will take up more 

than the proper amount of memory because it is holding the 

dataset. Therefore, memory efficiency is degraded. 

This paper proposes the Num Worker Tuner (NWT). NWT 

provides a way to find an appropriate number of dataloaders 

through the search space and utilize them as machine-

dependent parameters. Through this method, it is possible to 

automate and control the multi-process spawn of the data 

loader as a parameter, and it is possible to obtain memory 

efficiency and speed simultaneously.  

 

2. Related Works 

2.1 Multi-Processing in DataLoader 

Due to the language design, multithreading in Python is 

extremely cumbersome and not recommended. The Global 

Interpreter Lock (GIL) prevents fully parallelizing Python 

code between threads within the Python process. [4] Multi-

Process dataloader sets the num_workers argument to a posi-

tive integer and provides an easy switch to perform multi-

process data loads to avoid blocking computation with data 

loads. 

In general, the dataloader spawns a num_workers worker 

process whenever its iterator is created. Each worker receives 

a set of initialization arguments with a location for data 

fetching. This means that dataset access with disk I/O, trans-

form (e.g., collate function) is executed in the worker process. 

Finally, the worker terminates when the iterator is garbage 

collected or the task is done. 

 

2.2 Automatic Memory Pinning  

Data transfer from CPU to GPU uses hardware-dependent 

APIs. Currently, hardware vendors provide various tech-

niques to optimize data transfer to GPU. For example, one of 

the prominent vendors, NVIDIA, optimizes host-to-device 

data transfer with Pinned Memory. [5] 

However, at this point, GPU does not have direct access to 

data in pageable host memory. Therefore, when the data 

transfer is executed from pageable host memory to GPU 

memory, the CUDA driver first allocates a temporary page 

lock or pinned host array and copies it. Hence, it allows data 

transfer from host to device memory as a fixed array. 
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Pinned memory is used as a staging area for transfers from 

the device to the host. Programmers can directly allocate host 

arrays in pinned memory to avoid transfer costs between 

pageable and pinned host arrays. Pinned Memory data trans-

fer can be enabled through CUDA C/C++ or CUDA Python 

API, and various frameworks support this. 

 

 
Fig 1. Pageable Data Transfer versus Pinned Data Transfer 

 

3. Num Worker Tuner (NWT) 

  Num Worker Tuner (NWT) is a framework that finds the 

appropriate number of multiprocessing subprocesses for 

dataloaders through greedy search, considering the character-

istics of the dataset and hardware dependencies. Thus, it 

holds the same designated result for a single dataset combi-

nation and hardware dependency. Furthermore, even if there 

are various datasets, the result can be re-used if the transmit-

ted size is similar. 

 

3.1 Parameters 

NWT calls up to N-1 search spaces for subprocess in pro-

portion to the number of CPUs (N). Thus, if N processes are 

allocated to CPU cores, context switching between the pro-

cesses will degrade the overall performance. Also, NWT ig-

nores differences lower than the alpha value in the minimum 

execution time based on performance. Thus, insignificant 

performance gains can be controlled through alpha and track 

the best memory optimization. Finally, the iteration parame-

ter performs a data transfer loop based on pre-defined op-

tions. The default value for iteration is 100, which measures 

the transfer time and converts it to an average used to meas-

ure performance. 

 

Parameter Role Default 

alpha 
Ignoring differences within a 

certain range (seconds) 
0.5 

N Maximum value of search space #cores 

iteration Number of loops to accumulate  100 

Table 1. Parameters to Tune for NWT 

3.2 NWT 

NWT starts with the main process, spawns subprocesses 

up to N, and sequentially measures the data transfer cost. 

Then, it iterates by time spent, tracking best times. At this 

time, NWT tracks the memory usage of the entire system. 

Finally, based on the measurement results, the number of 

subprocesses of the dataloader with minimum overhead is 

determined and used as a system-wide parameter. 

 
Fig 2. Algorithm for NWT 

 

4. Experiments 

4.1 Experimental Setup 

The experiment was performed on the Ubuntu 20.04 oper-

ating system with AMD Ryzen Threadripper 3970X 32-Core 

Processor for CPU, DDR5 128GB for RAM, and 4x Nvidia 

Geforce RTX A100. We used CUDA (Compute Unified De-

vice Architecture) 11.1, a GPU parallel computing frame-

work, and PyTorch 1.11.1 nightly. All the experiments were 

performed with the GPU Pinned Memory option turned on as 

a default. 

We used CIFAR-10 as the dataset for the experiment. 

CIFAR-10 is an image classification dataset with dimensions 

of 60000x32x32 and was verified using the standard data 

batch size 128 recommended for MobileNetV2 and ResNet 

through CIFAR10 in PyTorch. 

We used traced malloc to track memory usage. Traced 

malloc emits current and peak usage of the memory for spec-

ified bound of the code. Since the current usage from traced 

malloc does not reflect the memory usage removed by gar-

bage collection, the memory usage was tracked through the 

peak memory usage. 

 

4.2 Experimental Result 

# of Subpro-

cesses 

Data Transfer Time 

(Normalized, second) 

Memory Usage 

(MB) 

0 (default) 14.25 2757.84 

14(optimal) 1.49 2025.32 

16(time best) 1.41 2055.37 

32 1.55 2275.36 

63 2.21 2773.60 

Table 2. Experimental Result over  

number of processes (selected) 

 

Table 2 shows the memory usage and data transfer time 

for the number of subprocesses in the CIFAR10 dataset. In 
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this case, using the normalization factor is for the calculation 

with accumulated value during 100 iterations. Thus, the nor-

malization value is expressed as the time required per actual 

data transfer. 

When data exists only in the main process, num of work-

ers 0, data fetching is performed in the same process which 

the dataLoader is initialized. Therefore, computing may be 

blocked in data loading by Python's Global Interpreter Lock 

(GIL). However, this mode may be preferred if the resources 

used to share data between processes (e.g., shared memory, 

file descriptors) are limited or if the entire dataset is small 

and fully loaded into memory. Due to this property, the result 

shows that memory usage for num_worker 0 is more signifi-

cant than that of the multi-processing dataloader. 

 

 
Fig 2. Data Transfer Time over  

the number of Dataloader Subprocesses 

 

  As the number of processes increases, the result shows 

that it becomes slower when the number of workers increases 

than the time best of 16 through inter-process communication 

overhead, including overhead on the operating system. Ac-

cordingly, it is crucial to find out the specific number of pro-

cesses. Also, based on the AMD Ryzen Threadripper 3970X 

32-Core Processor in the experimental environment, simply 

allocating 16 processes means allocating 17 processes, in-

cluding the main process. Therefore, the experimental results 

show that picking the appropriate number of processes based 

on the number of cores may not be suitable. 

Fig 3. shows the result on memory usage. It can be derived 

from the normalization and alpha (default 0.5) that the differ-

ence between N 14 and 16 is less than 0.005 per epoch. 

Therefore, it is possible to get the optimal value that appro-

priately responds to the linearly increasing memory usage 

without significantly affecting the data loading speed. From 

the experimental results, it takes 1.49 seconds for 14 and 

1.41 seconds for 16 subprocesses. From the given alpha, the 

difference between 14 and 16 subprocesses is insignificant at 

this time. Furthermore, memory usage is linearly increasing 

when a multiprocessing dataloader is a number greater than 2. 

Consequently, the NWT can derive 14 as the optimal value 

for subprocesses spawn and pass it on to the training algo-

rithm. 

 
Fig 3. Memory Usage(MB) over Number of Dataloader 

Subprocesses 

5. Conclusion 

In this paper, we propose NWT(Num Worker Tuner), an 

automated framework to tune the number of subprocesses 

spawns for multi-processing dataloader. 

NWT searches the optimal value for high-speed data 

transfer from CPU to GPU with corresponding data sizes and 

serves them as a system-wide parameter. 

NWT benefits several situations, such as 1) training a large 

model on distributed frameworks, 2) training with a higher 

speed across the single machine with multi-GPUs with corre-

sponding dataloader processes. 
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