• Title/Summary/Keyword: Multi-Parallel test

Search Result 94, Processing Time 0.028 seconds

RECENT IMPROVEMENTS IN THE CUPID CODE FOR A MULTI-DIMENSIONAL TWO-PHASE FLOW ANALYSIS OF NUCLEAR REACTOR COMPONENTS

  • Yoon, Han Young;Lee, Jae Ryong;Kim, Hyungrae;Park, Ik Kyu;Song, Chul-Hwa;Cho, Hyoung Kyu;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.655-666
    • /
    • 2014
  • The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.

Basic Control Algorithm for Parallel Formation of Multi-mining Robots (다중 집광로봇의 수평대형유지를 위한 기초 알고리즘 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Hong, Sup;Kim, Sang-Bong
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.465-473
    • /
    • 2014
  • This paper proposes a formation control method by which multi-mining robots maintain a specified formation and follow a path. To secure the path tracking performance, a pure-pursuit algorithm is considered for each individual robot, and to minimize the deviation from the reference path, speed reduction in the steering motion is added. For the formation, in which two robots are parallel in a lateral direction, the robots track the specified path at a constant distance. In this way, the Leader-Follower method is adopted and the following robot knows the position and heading angle of the leader robot. Through the experimental test using two ground vehicle models, the performance is verified.

A System Decomposition Technique Using A Multi-Objective Genetic Algorithm (다목적 유전알고리듬을 이용한 시스템 분해 기법)

  • Park, Hyung-Wook;Kim, Min-Soo;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.499-506
    • /
    • 2003
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several sub design structure matrices (DSMs) and processing them in parallel This paper proposes a new method for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multi-objective genetic algorithm and two sample test cases are presented to show the effect of the suggested decomposition method.

Quad-functional Built-in Test Circuit for DRAM-frame-memory Embedded SOG-LCD

  • Takatori, Kenichi;Haga, Hiroshi;Nonaka, Yoshihiro;Asada, Hideki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.914-917
    • /
    • 2008
  • A quad-functional built-in test circuit has been developed for DRAM-frame-memory embedded SOG-LCDs. The quad function consists of memory test, display test, serial transfer test, and parallel transfer test which is the normal operation mode for our SOG-LCD. Results of memory and display tests are shown.

  • PDF

Parallel task scheduling under multi-Clouds

  • Hao, Yongsheng;Xia, Mandan;Wen, Na;Hou, Rongtao;Deng, Hua;Wang, Lina;Wang, Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.39-60
    • /
    • 2017
  • In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks are executed concurrently on different VMs (Visual machines), where each task of the job will be executed synchronously. The goal of scheduling is to reduce the execution time and to keep the fairness between jobs to prevent some jobs from waiting more time than others. We propose a Cloud model which has multiple Clouds, and under this model, jobs are in different lists according to the waiting time of the jobs and every job has different parallelism. At the same time, a new method-ZOMT (the scheduling parallel tasks based on ZERO-ONE scheduling with multiple targets) is proposed to solve the problem of scheduling parallel jobs in the Cloud. Simulations of ZOMT, AFCFS (Adapted First Come First Served), LJFS (Largest Job First Served) and Fair are executed to test the performance of those methods. Metrics about the waiting time, and response time are used to test the performance of ZOMT. The simulation results have shown that ZOMT not only reduces waiting time and response time, but also provides fairness to jobs.

The development of parallel computation method for the fire-driven-flow in the subway station (도시철도역사에서 화재유동에 대한 병렬계산방법연구)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Park, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1809-1815
    • /
    • 2008
  • This experiment simulated the fire driven flow of an underground station through parallel processing method. Fire analysis program FDS(Fire Dynamics Simulation), using LES(Large Eddy Simulation), has been used and a 6-node parallel cluster, each node with 3.0Ghz_2set installed, has been used for parallel computation. Simulation model was based on the Kwangju-geumnan subway station. Underground station, and the total time for simulation was set at 600s. First, the whole underground passage was divided to 1-Mesh and 8-Mesh in order to compare the parallel computation of a single CPU and Multi-CPU. With matrix numbers($15{\times}10^6$) more than what a single CPU can handle, fire driven flow from the center of the platform and the subway itself was analyzed. As a result, there seemed to be almost no difference between the single CPU's result and the Multi-CPU's ones. $3{\times}10^6$ grid point one employed to test the computing time with 2CPU and 7CPU computation were computable two times and fire times faster than 1CPU respectively. In this study it was confirmed that CPU could be overcome by using parallel computation.

  • PDF

Implementing Distributed Optimal Power Flow Using the Alternating Direction Method

  • Chung Koohyung;Kim Balho H.;Song Kyung-Bin
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.412-415
    • /
    • 2005
  • The recent requirement for faster and more frequent solutions has encouraged the consideration of parallel implementations using decentralized processors. Distributed multi-processor environments can potentially greatly increase the available computational capacity and decrease the communication burden, allowing for faster Optimal Power Flow (OPF) solutions. This paper presents a mathematical approach to implementing distributed OPF using the alternating direction method (ADM) to parallelize the OPF. Several IEEE Reliability Test Systems were adopted to demonstrate the proposed algorithm.

Design of Multi-Sensor Data Fusion Filter for a Flight Test System (비행시험시스템용 다중센서 자료융합필터 설계)

  • Lee, Yong-Jae;Lee, Ja-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.414-419
    • /
    • 2006
  • This paper presents a design of a multi-sensor data fusion filter for a Flight Test System. The multi-sensor data consist of positional information of the target from radars and a telemetry system. The data fusion filter has a structure of a federated Kalman filter and is based on the Singer dynamic target model. It consists of dedicated local filter for each sensor, generally operating in parallel, plus a master fusion filter. A fault detection and correction algorithms are included in the local filter for treating bad measurements and sensor faults. The data fusion is carried out in the fusion filter by using maximum likelihood estimation algorithm. The performance of the designed fusion filter is verified by using both simulation data and real data.

Architecture design for speeding up Multi-Access Memory System(MAMS) (Multi-Access Memory System(MAMS)의 속도 향상을 위한 아키텍처 설계)

  • Ko, Kyung-sik;Kim, Jae Hee;Lee, S-Ra-El;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.55-64
    • /
    • 2017
  • High-capacity, high-definition image applications need to process considerable amounts of data at high speed. Accordingly, users of these applications demand a high-speed parallel execution system. To increase the speed of a parallel execution system, Park (2004) proposed a technique, called MAMS (Multi-Access Memory System), to access data in several execution units without the conflict of parallel processing memories. Since then, many studies on MAMS have been conducted, furthering the technique to MAMS-PP16 and MAMS-PP64, among others. As a memory architecture for parallel processing, MAMS must be constructed in one chip; therefore, a method to achieve the identical functionality as the existing MAMS while minimizing the architecture needs to be studied. This study proposes a method of miniaturizing the MAMS architecture in which the architectures of the ACR (Address Calculation and Routing) circuit and MMS (Memory Module Selection) circuit, which deliver data in memories to parallel execution units (PEs), do not use the MMS circuit, but are constructed as one shift and conditional statements whose number is the same as that of memory modules inside the ACR circuit. To verify the performance of the realized architecture, the study conducted the processing time of the proposed MAMS-PP64 through an image correlation test, the results of which demonstrated that the ratio of the image correlation from the proposed architecture was improved by 1.05 on average.

A Helicopter-borne Pulse Doppler Radar Signal Processor Development using High Speed Multi-DSP (고속 Multi-DSP를 이용한 헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Jeun, In-Pyung;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.23-28
    • /
    • 2005
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter.

  • PDF