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Implementing Distributed Optimal Power Flow
Using the Alternating Direction Method

Koohyung ChungJr , Balho H. Kim* and Kyung-Bin Song**

Abstract - The recent requirement for faster and more frequent solutions has encouraged the
consideration of parallel implementations using decentralized processors. Distributed multi-processor
environments can potentially greatly increase the available computational capacity and decrease the
communication burden, allowing for faster Optimal Power Flow (OPF) solutions. This paper presents a
mathematical approach to implementing distributed OPF using the alternating direction method
(ADM) to parallelize the OPF. Several IEEE Reliability Test Systems were adopted to demonstrate the

proposed algorithm.
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regional decomposition

1. Introduction

In this paper, we present an approach to parallelizing
optimal power flow (OPF) that is suitable for distributed
implementation and is applicable to very large inter-
connected power systems. The approach could be used by
utilities to optimize economy interchange without dis-
closing details of their operating costs to competitors.

We solve optimal power flows for each region and
coordinate the multiple OPFs through an iterative update
on constraint multipliers. In the interconnected system, for
instance, each individual utility solves a modified OPF that
includes its own service area and the borders it shares with
other utilities. The iterative updates require global synchro-
nization and the exchange of a very modest amount of data
between adjacent regions.

2. Review of Distributed OPF

Initially, array computers were used in the applications
of parallel computing to the problems experienced by
power systems. These computers are equipped with spe-
cialized processors for performing vector computations
efficiently [1]. Sundarraj et al. {2] demonstrated a distri-
buted decomposition of constrained economic dispatch on
a hypercube multiprocessor using the Dantzig-Wolfe
decomposition method.

While there has been some other works and progress in
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parallelizing power system problems (see the discussion
and references in [1]), major efforts have concentrated on
parallelizing individual steps such as Jacobian factorization,
and furthermore current implementations are centralized,
making use of large mainframe computers.

In [3], Kim and Baldick proposed an approach to
parallelizing optimal power flow (OPF) that is suitable for
distributed implementation and is applicable to very large
inter-connected power systems. In the approach, the OPF is
solved in a decentralized framework, consisting of each
region, in which a local processor would perform its own
OPF for the region and its border. Regions interact by
adjusting flows between regions depending on the prices
quoted for inter-regional interchanges.

3. Distributed Optimal Power Flow

We propose a scenario where each individual utility
solves a modified OPF that includes its own service area
and the border it shares with other utilities. The modified
OPF is similar to a standard OPF except that dummy
generator (Gpp) and dummy load (Lp) are modeled at the
border buses as in Figure 1. Naturally, the OPFs solved in
each region can be implemented with the fastest available
algorithms. However, it is also possible for each utility to
have a different OPF implementation for its own area.

The overall algorithm involves alternating solutions of
individual OPFs and updates of prices. It converges, in
principle, to a solution of the overall multi-utility OPF,
yielding appropriate generation levels in each utility to
minimize overall production costs. The multipliers on the
constraints could be used to set prices for the exchange of
real and reactive power.



Koohyung Chung, Balho H. Kim and Kyung-Bin Song 413

3.1 Regional Decomposition

In our distributed scheme, regions buy and sell elec-
tricity from adjacent regions at prices that are coordinated
by negotiations between adjacent regions. The price-setting
itself can be performed without a centralized processor.
The advantage of such decentralization is that only
synchronization information needs to be exchanged
globally, improving reliability in the event of communi-
cation failure.

Criginal Sygiem

Fig. 1 Decomposition for algorithm-ADM
3.2 Algorithm-Alternating Direction Method (ADM)

Gabay and Mercier [4], Tseng [5], and Eckstein et al. [6,
7] proposed the alternating direction method. The basic
idea underlying this approach is to sequentially perform the
minimization with respect to x with z, 1 fixed, then with
respect to z, followed by an update of the multiplier A. This
approach removes the difficulty of the joint minimization
in core variables, x and z, and thus preserves separability.
This approach can be viewed as a variant of the sequential
decomposition technique.

The iterative scheme can be given as:

m Step 1: Initialization.
m Step 2: Solve

= arg min{fa(x) + (Ak)+Ax+%“Ax— Zk"z}
m Step 3: Solve |
S arg min{fl7 (z2)- (ﬂk)+z + %HAXICH _ Z”z}

m Step 4: Compute Ay (x24T
m Step 5: Repeat Steps 2-4,

Where, the parameter r is optimally determined depend-
ing on the characteristics and size of the problem, and the

number of interconnected (decomposed) regions. In ADM,
however, the minimization steps cannot be performed
independently, and this restricts its potential advantage in
parallel implementations.

4. Case Study

Several case studies are performed to demonstrate the
distributed OPF using the ADM method. The objectives of
the case studies are, first, to discover the viability of the
proposed algorithm in practical implementation and,
second, to test and compare the convergence property of
the Algorithm-ADM.

Data from two IEEE Reliability Test Systems were used
to demonstrate the performance of the algorithm. Table 1
summarizes the test systems. The first column denotes the
system identification number, the second column indicates
the total number of buses in each system, while the third
and fourth columns show the number of regions and the
number of core buses in each region. The fifth column
presents the number of tie-lines that interconnect the
regions, while the sixth column shows the total number of
transmission lines in each complete system. The last
column indicates the total per unit loads in the systems.
The five smaller systems consist of two, three, or four
copies of two IEEE Test Systems.

Performance comparisons are based on the cpu-times
and number of iterations required for desired accuracy. For
the case studies, an optimization package, GAMS 2.25
(MINOSS5 and CONOPT) [8] was employed.

Table 2 presents the number of iterations for parallel
OPF with Algorithm-ADM. It is seen that the proposed
algorithm reaches the solution within 6 or 7 iterations, and
the number of iterations depends rather on the system
configuration than the size of the individual system or the
number interconnected regions (systems).

Table 1 Case study systems

Wo. \ Buses \ Regions \ Core Buses | Ties | Lines | Load
1 50 2 24,24 2 80 50
2 78 3 24,24,24 6 126 | 74
3 108 4 24242424 | 12 | 186 | 100
4 | 238 2 118,118 2 376 | 76
5 360 3 118,118,118| 6 570 | 126

The cpu-time results from the undecomposed (centrali-
zed) and the parallel implementation of Algorithm-ADM
are summarized in Table 3, where all the cpu-times include
the overheads necessary for reading data and communi-
cating among processors. As seen in Table 3, the paralle-
lized (distributed) scheme has no advantage over the
centralized scheme in cpu-time because of excessive
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overheads, but as the size of the individual system (region)
increases, the parallelized scheme exercises considerable
efficiency over the centralized scheme.

Table 2 Number iterations for parallel OPF with GAMS:

Algorithm-ADM

System Number | No.1 | No.2 | No.3 | No4 | No.5

Iterations 6 6 7 4 5

Table 3 Comparison of Cpu-time (sec)

System Number | No.l1 | No.2 | No.3 | No.4 | No.5

Centralized OPF 1.9 2.4 4.2 72 11.7

Algorithm-ADM | 2.1 29 4.8 5.5 83

5. Conclusion

‘We have presented an effective parallel algorithm, based
on the alternating direction method (ADM) that can be
applied to the distributed OPF. In a distributed
environment there are overheads that may reduce the
possible iteration number. '

The case studies indicate that the proposed algorithm
can be implemented for solving optimal power flow
problems in a parallel manner.

Our future study is to improve the convergence propetty
of the proposed algorithm.
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