• 제목/요약/키워드: Multi-Modal Vibration Control

검색결과 28건 처리시간 0.024초

압전감지기/작동기를 이용한 복합적층판의 다중모드 진동제어 (Multi-Modal Vibration Control of Laminated Composite Plates Using Piezoceramic Sensors/Actuators)

  • 김문현;강영규;박현철;황운봉;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3173-3185
    • /
    • 1996
  • Multi-model vibration control of laminated composites plates for various fiver orientations has been carried out by making use of piezolectric materials(PZT) as sensors and actuators. Cantilever plate is used as a specimen to test multi-modal vibration supression under random exitation. Impulse technique is applied to determine the natural frequency, the damping ratio(.zeta.) and the modal damping(2.zeta..omega.) of the first bending and the trosion modes. Two independent controllers are implemented to control the two modes simultaneously and established digitally on the basis of the direct negative velocity feedback control with collocated sensor/actuator. Experimental results for various fiber orientations and feedback gains are compared with finite element analysis considering stiffnesses and dampings of piezoeletiric sensors, actuators and bonding layer.

신경망 제어기를 이용한 복합재 보의 다중 모드 적응 진동 제어 (Adaptive Multi-mode Vibration Control of Composite Beams Using Neuro-Controller)

  • 양승만;류근호;윤세현;이인
    • Composites Research
    • /
    • 제14권1호
    • /
    • pp.39-46
    • /
    • 2001
  • 본 논문에서는 신경망 제어기를 이용하여 복합재 보의 적응 다중 모드 진동 제어에 관한 실험적 연구를 수행하였다. 신경망 제어기는 계산량이 많기 때문에 실시간 적용에 어려움이 따른다. 본 논문에서는 진동 신호를 모드별로 분리하기 위한 적응 노치 필터를 제안하였다. 연결 강도의 개수가 적어서 계산량이 적은 두 개의 신경망 제어기를 이용하여 각 모드의 제어력을 계산하였다. 끝단 질량의 위치의 차이로 인해 고유 진동수가 다른 두 시편 A, B에 대하여 적응 노치 필터와 신경망 제어기를 이용한 적응 진동 제어를 수행한 결과, 두 경우 모두 효과적으로 진동 제어가 이루어졌다. 이러한 결과로 시스템 파라미터의 변환에 대한 신경망 제어기의 적응 진동 제어 성능을 확인할 수 있다.

  • PDF

다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현 (Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization)

  • 유정규;김지철;김승조
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF

시스템식별과 최적제어를 이용한 지능형 복합적층판의 다중보드 진동제어 (Multi-modal Vibration Control of Intelligent Laminated Composite Plates Using System Identification and Optimal Control)

  • 김정수;강영규;박현철
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.5-11
    • /
    • 2002
  • Active vibration control of intelligent laminated composite plates is performed experimental1y Laminated composite place is modeled by the system identification method. For the system identification process, the laminated composite place is excited by two piezoelectric actuators with PRBS signals. At the same time, the displacement of the laminated composite plate is measured by a gap sensor. From these excited PRBS signals and the measured displacement sequence, system parameters of the laminated composite plate are estimated using a recursive prediction error method. Model of the laminated composite plate with two piezoeletric actuators is assumed to be the form of ARMAX. From the estimated ARHMAX model, a state space equation of the observable canonical form is obtained. With this state space equation, a controller and an observer for active vibration control is designed using the optimal control method. Controller and observer are implemented on a digital system. Experiments on the vibration control are Performed with changing the outer layer fiber orientation of intelligent composite plates.

압전 세라믹 감지기/작동기와 점탄성 재료를 이용한 지능형 복합 적층판의 진동 제어 (Vibration Control of Smart Laminated Composite Plates Using Piezoceramic Sensor/Actuators and Viscoelastic Material)

  • 강영규;서경민;이시복
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 2001
  • Active vibration control of laminated composite plates has been carried out to design structure with maximum possible damping capacity, using piezoceramic sensor/actuators and passive constrained-layer damping treatment. The equations of motion are derived for symmetrical, multi-layer laminated plates. The damping ratio(ζ) and modal damping(2ζ$\omega$) of the first bending and torsional modes are calculated by means of iterative complex eigensolution method for both passive and active vibration control. This paper addresses a design strategy of laminated composite plate under structural vibrations.

  • PDF

Performance evaluation of inerter-based damping devices for structural vibration control of stay cables

  • Huang, Zhiwen;Hua, Xugang;Chen, Zhengqing;Niu, Huawei
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.615-626
    • /
    • 2019
  • Inerter-based damping devices (IBBDs), which consist of inerter, spring and viscous damper, have been extensively investigated in vehicle suspension systems and demonstrated to be more effective than the traditional control devices with spring and viscous damper only. In the present study, the control performance on cable vibration reduction was studied for four different inerter-based damping devices, namely the parallel-connected viscous mass damper (PVMD), series-connected viscous mass damper (SVMD), tuned inerter dampers (TID) and tuned viscous mass damper (TVMD). Firstly the mechanism of the ball screw inerter is introduced. Then the state-space formulation of the cable-TID system is derived as an example for the cable-IBBDs system. Based on the complex modal analysis, single-mode cable vibration control analysis is conducted for PVMD, SVMD, TID and TVMD, and their optimal parameters and the maximum attainable damping ratios of the cable/damper system are obtained for several specified damper locations and modes in combination by the Nelder-Mead simplex algorithm. Lastly, optimal design of PVMD is developed for multi-mode vibration control of cable, and the results of damping ratio analysis are validated through the forced vibration analysis in a case study by numerical simulation. The results show that all the four inerter-based damping devices significantly outperform the viscous damper for single-mode vibration control. In the case of multi-mode vibration control, PVMD can provide more damping to the first four modes of cable than the viscous damper does, and their maximum control forces under resonant frequency of harmonic forced vibration are nearly the same. The results of this study clearly demonstrate the effectiveness and advantages of PVMD in cable vibration control.

Experimental investigation on multi-mode vortex-induced vibration control of stay cable installed with pounding tuned mass dampers

  • Liu, Min;Yang, Wenhan;Chen, Wenli;Li, Hui
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.579-587
    • /
    • 2019
  • In this paper, pounding tuned mass dampers (PTMDs) were designed to mitigate the multi-mode vortex-induced vibration (VIV) of stay cable utilizing the viscous-elastic material's energy-dissipated ability. The PTMD device consists of a cantilever metal rod beam, a metal mass block and a specially designed damping element covered with viscous-elastic material layer. Wind-tunnel experiment on VIV of stay cable model was set up to validate the effectiveness of the PTMD on multi-mode VIV mitigation of stay cable. By analyzing and comparing testing results of all testing cases, it could be verified that the PTMD with viscous-elastic pounding boundary can obviously mitigate the VIV amplitude of the stay cable. Moreover, the installed location and the design parameters of the PTMD device based on the controlled modes of the primary stay cable, would have a certain extent suppression on the other modal vibration of the stay cable, which means that the designed PTMDs are effective among a large band of frequency for the multi-mode VIV control of the stay cable.

KSR-III의 전기체 모달 시험 (Ground Vibration Test for Korea Sounding Rocket - III)

  • 우성현;김영기;이동우;문남진;김홍배
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

분포형 압전 필름 감지기와 압전 세라믹 작동기를 이용한 보의 진동 제어 (Vibration Control of Beam using Distributed PVDF sensor and PZT actuator)

  • 박근영;유정규;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.413-417
    • /
    • 1997
  • Distributed piezoelectric sensor and actuator have been designed for efficient vibration control of a cantilevered beam. Both PZT and PVDF are used in this study, the former as an actuator and the latter as a sensor for our integrated structure. For the PZT actuator, the position and size have been optimized. Optimal electrode shape of the PVDF sensor has been determined. For multi-mode vibration control, we have used two PZT actuators and a PVDF sensor. Electrode shading of PVDF is more powerful for modal force adjustment than the sizing and positioning of PZT. Finite element method is used to model the structure that includes the PZT actuator and the PVDF sensor. By deciding on or off of each PZT segment, the length and the location of the PZT actuator are optimize. Considering both of the host structure and the optimized actuators, it is designed that the active electrode width of PVDF sensor along the span of the beam. Actuator design is based on the criterion of minimizing the system energy in the control modes under a given initial condition. Sensor is designed to minimize the observation spill-over. Modal control forces for the residual(uncontrolled) modes have been minimized during the sensor design. Genetic algorithm, which is suitable for this kind of discrete problems, has been utilized for optimization. Discrete LQG control law has been applied to the integrated structure for real time vibration control. Performance of the sensor, the actuator, and the integrated smart structure has been demonstrated by experiments.

  • PDF

능동구속감쇠 기법을 이용한 복합적층보의 진동제어 (Vibration Control of Laminated Composite Beams using Active Constrained Layer Damping Treatment)

  • 강영규;김재환;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1333-1337
    • /
    • 2000
  • The flexural vibration of laminated composite beams with active and passive constrained-layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations with active control.

  • PDF