• Title/Summary/Keyword: Multi-Jet

Search Result 181, Processing Time 0.027 seconds

PAGAN I: MULTI-FREQUENCY POLARIMETRY OF AGN JETS WITH KVN

  • KIM, JAE-YOUNG;TRIPPE, SASCHA;SOHN, BONG WON;OH, JUNGHWAN;PARK, JONG-HO;LEE, SANG-SUNG;LEE, TAESEOK;KIM, DAEWON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.285-298
    • /
    • 2015
  • Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observations are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to > 108.01 K and > 109.86 K, respectively. Degrees of linear polarization mL are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with mL ~ 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

FLOW DISTRIBUTION IN THE CORE OF HANARO AFTER SUPPRESSING THE JET FLOW IN THE GUIDE TUBE USED FOR LOADING FISSION MOLY TARGET (Fission Moly 표적을 장전하기 위한 안내관의 제트유동 억제 후 하나로 노심 유량분포)

  • Park Yong Chul;Lee Byung Chul;Kim Bong Soo;Kim Kyung Ryun
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.66-71
    • /
    • 2005
  • HANARO, a multi-purpose research reactor, 30 MWth open-tank-in-pool type, is planning to produce a fission moly-99 of radio isotopes, a mother nuclide of Tc-99m, a medical isotope and a target handling tool is under development for loading and unloading it in a circular flow tube (OR-5) of HANARO. A guide tube is extended from the reactor core to the top of the reactor chimney for easily loading the target under a normal operation of the reactor. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube. The jet flow was suppressed in the guide tube after reducing the inner diameter of a flow restriction orifice installed in the OR-5 flow tube for adding the pressure difference in the flow tube. This paper describes an analytical analysis to calculate the flow distribution in the core of HANARO after suppressing the jet flow of the guide tube. As results, it was confirmed through the analysis results that the flow distribution in the core of HANARO were not adversely affected.

The centroid shift of Sgr A*

  • Cho, Il-Je;Sohn, Bong Won;Jung, Taehyun;Kino, Motoki;Zhao, Guang-Yao;Agudo, Ivan;Rioja, Maria;Dodson, Richard
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.41.1-41.1
    • /
    • 2016
  • The Galactic center, Sagittarius A* (Sgr A*), is the closest supermassive black hole and emits synchrotron radiation. It provides great opportunity to study the origin of mm/sub-mm emission. Currently, two competing models have been suggested as a jet base and a radiatively inecient accretion flow (RIAF). To unveil the properties, the extremely high resolution(${\sim}10{\mu}as$) corresponding to the projected Schwarzschild radius of ~0.1AU is necessary. With KVN, a jet model can be tested by multi- frequency simultaneous observations because the optically thick surface in a jet (i.e. radio core) moves toward the center at a higher frequency. We conducted 8 observations with KVN at 43/86GHz in 2015, and found that the measured positional shift to the reference calibrator, J1744-3116, was ~0.3 mas to the south of Sgr A* using the source frequency phase referencing (SFPR) at Q/W bands for the first time. With the result, in the future, we will attempt to measure the variation of source position shifts that can constrain the direction of approaching jets and the variability of black hole activity of Sgr A*.

  • PDF

Flow Characteristics for Guide Tube of Circular Irradiation Hole in HANARO (하나로 원형 조사공의 안내관 유동특성)

  • Park, Y.C.;Wu, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1835-1840
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve meters (12 m) depth of the reactor pool and cooled by the upward flow that the coolant enters the lower inlet of the plenum,. rises up through the grid plate and the core channel and comes out from the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be quickly raised up to the top of the chimney through the guide tube by a jet flow. This paper describes an analytical analysis that is the study of the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the guide jet is suppressed under the top of the chimney after modifying the orifice diameter of 37.5 mm to 31 mm.

  • PDF

Characterization of mechanical and photocatalytic performance on cement-based materials with TiO2 particles for binder jet 3D printing (바인더젯 3D 프린팅을 위한 TiO2 입자를 함유한 시멘트 기반 재료의 기계적 성능 및 광촉매 특성 분석)

  • Liu, Jun-Xing;Li, Pei-Qi;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.69-70
    • /
    • 2023
  • The development of advanced 3D printing technologies has opened up new opportunities for customized digital designs in the construction industry. Using nano- and micro-scale additives is expected to improve the performance of cement-based materials in 3D printing. TiO2 particles have been widely used as reinforcing additives in cement-based materials. Therefore, this study aims to investigate the application of cement-based materials containing multi-size TiO2 particles in binder jet 3D printing and the effect of different-size TiO2 particles on the performance of printed samples. TiO2 particles exhibit an excellent filling effect, which increases the density of the printed samples and promotes hydration, thereby improving the compressive strength of the samples. In addition, larger TiO2 particles exert more pronounced filling and photocatalytic effects on the resulting samples.

  • PDF

대기압 멀티 플라즈마 소스의 균일한 방전에 관한 연구

  • Jo, Tae-Hun;Yun, Myeong-Su;Kim, Dong-Hae;Choe, Eun-Ha;Jo, Gwang-Seop;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.570-570
    • /
    • 2013
  • 최근 바이오산업에 플라즈마를 융합하면서 다양한 연구가 진행되고 있다. 그 중 세포 재생이나, 멸균 등의 연구에 플라즈마를 이용하는 연구도 활발하게 진행되고 있다. 그러나 현재 사용되는 대기압 플라즈마 소스는 주로 단일 소스를 이용한다. 그러나 단일소스로는 연구의 진행 속도나 재현성 면에서 오차가 있는 것이 현실이다. 그래서 멀티소스에 대한 필요성이 증대되고 있다. 멀티 대기압 소스는 균일한 플라즈마 방전이 핵심이다. 그러나 대기압 조건에서 각 소스별로 균일하게 방전시키기는 쉽지 않다. 각 소스별로 동일한 power인가를 하고 방전기체의 동일한 flow를 맞추기 위한 연구도 다양하게 진행 중에 있다. 본 연구에서는 4개의 멀티소스를 24 well 크기에 맞춰서 설계 및 제작을 하였고 균일한 방전 및 flow에 대한 측정 연구를 진행하였다. 균일한 방전 측정을 위해서 먼저 전기적으로 각각 그라운드를 설치하여 각 그라운드마다 전압 및 전류를 측정하였고, 방전기체의 균일한 flow를 확인하기 위해 각 소스별로 플라즈마 방전 전에 흐르는 기체의 양을 측정 하였다.

  • PDF

KVN/KaVA AGN WG report - Preparation of KVN/KaVA AGN Key Science

  • Sohn, Bong Won;Kino, Motoki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.115-115
    • /
    • 2014
  • First, We will briefly introduce early science results of AGN observations with KVN and KaVA. KaVA is the combined array of the Korean VLBI network (KVN) and VLBI Exploration of Radio Astronomy (VERA). These include KaVA monitoring of M87, Sgr A* and a few bright blazars and KVN Search for circular polarized Blazars. Furthermore, we will present our future plan of monitoring observation of Sgr A* and M87 with KaVA and Low Radio Power AGN multi frequency polarization survey with KVN. Because of the largeness of their centralsuper-massive black holes, we select them as top-priority sources of our key science program (KSP). The main science goals of the KaVA KSP are (1) mapping the velocity field of the M87 jet and testing magnetically-driven-jet paradigm, and (2) obtaining tightest constraints on physical properties of radio emitting region in Sgr A. High sensitivity achieved through simultaneous multifrequency phase referencing technique of KVN will allow us to explore Low Radio Power AGN cores which build majority of AGNs and therefore are important for undestanding the evolution of AGNs and of their hosts.

  • PDF

Electrohydrodynamic Jet Printing Capable of Removing Substrate Effects and Modulating Printing Characteristics (기판으로부터의 영향을 제거한 전기수력학 젯 프린팅 및 그 특성 조절)

  • Lee, Jun-Sung;Kim, Young-Jae;Kang, Byeong-Geun;Kim, Sang-Yoon;Park, Jae-Hong;Hwang, Jung-Ho;Kim, Yong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1747-1751
    • /
    • 2008
  • Electrohydrodynamic jet printing (EHDP) technique is widely used for the direct writing. However, in the existing EHDP method, the printing characteristics are affected by the printing substrate used, and the line width of the printed is determined by the geometry of the nozzle. We propose an EHDP method which is capable of (1) removing the effect from the substrate, and (2) controlling the line width through the ON/OFF control of the each nozzle in the nozzle array. Printing characteristics of our EHDP system were examined and successful ON/OFF control of the nozzle array were demonstrated. By using the proposed EHDP, it is expected that stable meniscus regardless of the substrate and different line widths even using the same nozzle can be achieved.

  • PDF

Study for Conductive and Non-conductive Multi-layers Depth Profiling Analysis of Radio Frequency Gas-jet Boosted Glow Discharge Spectrometry (Modified Gas-jet Boosted Radio-frequency Glow Discharge 셀의 개발 및 최적화에 관한 연구)

  • Cho, Won Bo;Borden, Stuart;Jeong, Jong Pil;Kang, Won Kyu;Kim, Kyu Whan;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.108-114
    • /
    • 2002
  • The new system using a glow discharge atomic emission spectrometer for the direct analysis of solid samples has been developed and characterized. The system was consisted of new glow discharge cell improved previous gas-jet boosted nozzle and radio-frequency power supply. In the case of previous type glow discharge chamber, it had been fitted trace analysis of low alloy steel with low discharge power, because it was to decrease redeposition and increase sample weight loss. But it had a problem that plasma becomes unstale due to increased sample weight loss and redeposition resulting from the high discharge power. Because of being problem of previous glow discharge, it is impossible to analyze using high power. The modified gas-jet boosted glow discharge to solve this problem would improve to be less sample loss rate of modified nozzle than sample loss rate of previous nozzle on the equal discharge condition, and improve to increase stability of plasma. The effect of discharge parameters such as discharge pressure, gas flow rate and power on the sample loss rate, emission intensity has been studied to find optimum discharge conditions. The calibration curves of Fe were obtained with 3 low-alloy samples.