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Abstract. A new approach, Multi-Objective Design Exploration (MODE), is presented to address
Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the
structure of the design space from the trade-off information and visualizes it as a panorama for
Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi
Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of
this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-
Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because
the optimization system becomes very computationally expensive, only brief exploration of the design
space has been performed. However, data mining result demonstrates that design knowledge can
produce a good design even from the brief design exploration.

Key words: Multi-Objective Design, Multidisciplinary Design Optimization, Evolutionary
Computation, Self-Organizing Map, CFD.

1 INTRODUCTION

This paper discusses a new approach for Multidisciplinary Design Optimization (MDO) by CFD-
CSD coupling. MDO has been a rapidly growing area of research{19,21]. Typical MDO problem
involves competing objectives, for example in the aircraft design, minimization of aerodynamic drag,
minimization of structural weight, etc. While single objective problems may have a unique optimal
solution, multi-objective problems (MOPs) have a set of compromised solutions, largely known as the
trade-off surface, Pareto-optimal solutions or non-dominated solutions. These solutions are optimal in
the sense that no other solutions in the search space are superior to them when all objectives are
considered (Fig. 1). '

Traditional optimization methods such as the gradient-based methods[22] are single objective
optimization methods that optimize only one objective. These methods usually start with a single
baseline design and use local gradient information of the objective function with respect to changes in
the design variables to calculate a search direction. When these methods are applied to a MOP, the
problem is transformed into a single objective optimization problem by combining multiple objectives
into a single objective typically using a weighted sum method. For example, to minimize competing
functions £; and f;, these objective functions are combined into a scalar function F as

F=w-fi+wy-f; (D

This approach, however, can find only one of the Pareto-optimal solutions corresponding to each
set of the weights w, and w,. Therefore, one must run many optimizations by trial and error adjusting
the weights to get Pareto-optimal solutions uniformly over the potential Pareto-front. This is
considerably time consuming in terms of human time. What is more, there is no guarantee that
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uniform Pareto-optimal solutions can be obtained. For example, when this approach is applied to a
MOP that has concave trade-off surface, it converges to two extreme optimums without showing any
trade-off information between the objectives (Fig. 2). To overcome these difficulties, Normal-
Boundary Intersection Method[3] and Aspiration Level Method[14] were developed.

An alternative approach to solve MOP is to find as many Pareto-optimal solutions as possible to
reveal trade-off information among different objectives. Once such solutions are obtained, Decision
Maker (DM) will be able to choose a final design with further considerations. Evolutionary
Algorithms (EAs, for example, see [2] and [4]) are particularly suited for this purpose.

objective function f,
objective function f,

/”

Pareto-front

Pareto-front ¢

objective function f, objective function f,
Figure 1 The concept of Pareto-optimality =~ Figure 2 Weighted-sum method applied to
a MOP having a convex Pareto-front

EAs have been extended successfully to solve MO problems[6,7]. EAs use a population to seek
optimal solutions in parallel. This feature can be extended to seek Pareto solutions in parallel without
specifying weights between the objective functions. Because of this characteristic, EAs can find Pareto
solutions for various problems having convex, concave and discontinuous Pareto front. The resultant
Pareto solutions represent global trade-offs. In addition, EAs have other advantages such as
robustness and suitability for parallel computing. Due to these advantages, EAs have been applied to
MOPs very actively (EMO proceedings). EAs have been also applied to single objective and multi-
objective aerospace design optimization problems[1, 8, 16, 18, 20].

This approach of finding many Pareto solutions works fine as it is, however, only when the number
of objectives remains small (usually two, three at most, as shown in Fig. 3). To reveal trade-off
information from the resultant Pareto front for real-world problems with many objectives,
visualization of the Pareto front becomes an issue. Several techniques have been considered, such as
parallel coordinates[6], box plot[17], and Self-Organizing Map (SOM)[15]. Because such
visualization is a tool for data mining, data mining is found very important in this approach.

To support data mining activities, response surfaces are found versatile. Once the surface is
constructed, it can be used for statistical analysis, for example, analysis of variance (ANOVA)[10].
ANOVA shows the effect of each design variables on objective functions quantitatively while SOM
shows the information qualitatively. When the response surface method (RSM) is introduced for data
mining as post-process of optimization, it can be applied to pre-process of optimization as a surrogate
model,[9,12,23] too. Pre-process has been an important aspect of introduction of surrogate models
because it would reduce the computational expense greatly, while it would produce rich non-
dominated solutions efficiently. In this paper, surrogate models are introduced for both pre- and post-
processes. However, it should be noted that RSM is needed for post-process primarily. EAs may be
applied from the beginning in parallel to building the surrogate model. If function evaluations are very
cheap, EAs may also be applied directly.

As a result, the new approach for MDO named as Multi-Objective Design Exploration (MODE)
can be summarized as a flowchart shown in Fig. 4. MODE is not intended to give an optimal solution.
MODE reveals the structure of the design space from the trade-off information and visualizes it as a
panorama for DM. DM will know the reason for trade-offs from non-dominated designs, instead of
receiving an optimal design without trade-off information.
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A preliminary form of MODE without RSM has been applied to a MDO problem for a regional-jet
wing (Fig. 5) in cooperation with Mitsubishi Heavy Industries, Ltd. under the small jet aircraft R&D
project sponsored by the New Energy Development Organization of Japan (NEDO). The present
MDO system employs a Navier-Stokes code coupled with NASTRAN. Because the resulting
optimization system becomes very computationally expensive, only brief exploration of the design
space has been performed. This paper reports the results of the visual data mining. A full version of
MODE is currently applied to obtain further improvements.

2 objectives 3 objectives 4 objectives

Minimization problems

Figure 3 Visualization of areto front

Define design space —I Parameterization: PARSEC, B-Spline, etc.
-===®{ Choose sample points | Design of Experiment: Latin Hypercube
L Construct sirrogate model | Response Surface Method: Kriging Model
‘ .
| Find non-dominated ﬁ-om—l Optimization: Adaptive Range Multi Objective Genetic
Algorithms
‘ l Check the model and front ] Uncertainty Analysis: Expected Improvement based on
Kriging Model, statistics of design variables, etc.

I Extract design knowledgew Data Mining: Analysis of Variance, Self-Organizing Map, etc.

Figure 4 Flowchart of Multi-Objective Design Exploration (MODE) with component algorithms

Figure 5 Artist view of regional jet (courtesy of Mitsubishi Heavy Industries, Ltd.)
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2 MULTIDISCIPLINARY WING DESIGN

2.1 Objective Functions

In this optimization, minimization of the block fuel at a required target range derived from
aerodynamics and structures is considered as the primary objective function. In addition, two more
objective functions are considered: minimization of the maximum takeoff weight and minimization of
the drag divergence between transonic and subsonic conditions. See [1] for details.

2.2 Geometry Definition

The design variables describe airfoil, twist, and wing dihedral. The airfoil was defined at three
spanwise cross-sections using the modified PARSEC with nine design variables (Xup, Zups Zuxups Xios Zios
Zudo> X7z s Pre» and Iigi/TLey) for each cross-section as shown in Fig. 6. The twists were defined at six

spanwise locations, and then wing dihedrals are defined at kink and tip locations. The entire wing
shape was thus defined using 35 design variables.

End

Figure 7: Flowchart for static aeroelastic analysis

2.3 Evaluation Method

The present ARMOGA generates eight individuals per generation, and evaluates aerodynamic and
structural properties of each design candidate as follows:
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1. Structural optimization is performed to jig shape to realize minimum wing weight with
constraints of strength and flutter requirements using NASTRAN. And then, weights of wing
box and carried fuel are calculated.

2.  Static aeroelastic analysis is performed at three flight conditions to determine the aeroelastic

deformed shapes (1G shape) using Euler solver and NASTRAN (Fig. 7).

Aerodynamic evaluations are performed for the 1G shapes using a N-S solver.

4.  Flight envelope analysis is performed using the properties obtained as above to evaluate the
objective functions. Using the objective functions, the optimizer generates new individuals
for the next generation via genetic operations, such as selection, crossover, and mutation.

The entire flowchart is given in Fig. 8.

W

——

ARMOGA

mmg‘g
Individual #N

B ‘Armtmmw lldc: Strvctiral Model.
I

T ite=l

e

Buler cenp. @a=Const, |

Euler conp. @0 =Cout.

Static Aeroelastic Analysis Module

- Evalustion of Tirée Olijective Functieny

Block Fual .
- Mav Toleoff Weight
¢ Cp, diwrgeres (MDD)
<Chiack of Constratnts
: MDD
Furl Quontly

Figure 8: Flowchart of the present MDO system for regional-jet wing

3 DATA MINING RESULTS

In this design, instead of searching for the optimal solution, we have applied ARMOGA to explore
the design space briefly. The optimization process was stopped when improvements were observed in
all objectives. Then, SOM was applied to visualize the design space by using all the solutions
computed so far. SOM is an unsupervised learning, nonlinear projection algorithm{13] from high to
low-dimensional space. This projection is based on self-organization of a low-dimensional array of
neurons. In the projection algorithm, the weights between the input vector and the array of neurons are
adjusted to represent features of the high dimensional data on the low-dimensional map. Present
SOMs are generated by using commercial software Viscovery ® SOMine plus 4.0 produced by
Eudaptics GmbH [5].
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Based on the observation, a new wing design has been suggested and the resulting wing has been
confirmed to outperform the other computed solutions. This illustrates the importance of the present
approach because design knowledge can produce a better design even from the brief exploration of the
design space.

3.1 Optimization Results

The population size was set to eight, and then roughly 70 Euler and 90 N-S computations were
performed in one generation. It took roughly one and nine hours of CPU time on NEC SX-5 and SX-7
per PE for single Euler and N-S computations, respectively. The population was re-initialized every
five generations for the range adaptation. A total evolutionary computation of 19 generations was
carried out. The evolution did not converge yet. However, the results are satisfactory because several
non-dominated solutions have achieved significant improvements over the initial design. Furthermore,
a sufficient number of solutions are searched so that the sensitivity of the design space around the
initial design can be analyzed.

Figure 9 shows all solutions projected on a two-dimensional plane between two objectives, the
block fuel and the drag divergence. The non-dominated front is formed, indicating the trade-off
between the block fuel and the drag divergence. All solutions projected on two-dimensional planes
between other combinations are shown in Figs. 10, and 11. As the non-dominated solutions did not
comprise a front, these figures indicate that there are no global trade-offs between these combinations
of the objective functions.

The comparison between initial and optimized geometries is investigated. Although the wing box
weight tends to increase as compared with that of the initial geometry, the block fuel can be reduced.
Thus, the aerodynamic performance can redeem the penalty due to the structural weight. An individual
on the non-dominated front shown in Fig. 9 is selected, indicated as ‘optimized’, and then the
optimized geometry is compared with the initial geometry.

Although the drag minimization is not considered here, Cp is reduced. By comparison of the polar
curves at constant Cy, for the cruising condition, Cp, of the optimized geometry is found to be reduced
by 5.5 counts. Due to the improvement of the drag, the block fuel of the optimized geometry is
decreased by over one percent even with its structural weight penalty.

Caitiv- T = -
TS Nendomated sotution § | SOW o o LS Nondomingied wivive 31
;Jaoums . - Lower . ‘ .
. o : e .
$20kg 2 “ @ .
g F _ .
g 2 S
?,’ -1 s ) Y v“.o *
g * igher 3 Y e%.:".’ S
U = o % pes
. 4 - P ap, 3.
-2 N -3 LA e
p IW i.’:. 4 % * ;
Y U]
. kg o’ * Ay
Block Fued tkg) Bk Fuel fig)
Figure 9: All solutions on two-dimensional Figure 10: All solutions on two-dimensional
plane between block fuel and drag divergence plane between block fuel and maximum

takeoff weight
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Figure 11: All solutions on two-dimensional plane between maximum takeoff weight and drag
divergence

3.2 Data Mining by SOM

Detailed flow visualization for the optimized geometry indicates that the main drag reduction is
achieved at the kink location. However, the optimized geometry has inverted gull at the kink. Figure
12(a) shows the SOM colored by the angle between inboard and outboard on the upper wing surface
for the gull-wing at the kink location. Angles greater and less than 180 deg correspond to gull and
inverted gull-wing, respectively. Higher values of this angle as shown in Fig. 12(a) correspond to
higher Cp at the transonic cruising flight condition as shown in Fig. 12(b). However, at angles less
than 180 deg, there is little correlation between Fig. 12(a) and 12(b). The inverted gull did not affect
aerodynamic performance very much.

Furthermore, SOM also shows that higher angles shown in Fig. 12(a) correspond to higher
maximum takeoff weights as shown in Fig. 12(c). The inverted gull-wing is known to have a structural
weight increase, which is also observed in the present results. From the visualization of the design
space by SOM, it is suggested that non-gull wings should be designed even though the optimized
geometry has inverted gull.

@ | ® L ©
Figure 12: SOM; (a) colored by the angle on upper surface expressing the gull-wing at the kink
location, (b) colored by Cp under transonic cruising flight condition, (¢) colored by the maximum
takeoff weight.

3.3 Evaluation of the Non-Gull Geometry

The optimized wing shape has been modified to examine the non-gull wing shape (called as
‘optimized_mod’) can achieve better performance and to verify the design knowledge obtained by the
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previous data mining.

The result is shown in Figs. 13 to 15. These figures show that optimized_mod improves both block
fuel and maximum takeoff weight. Moreover, by comparison of the polar curves at constant C for
cruising condition shown in Fig. 16, Cp of optimized_mod is found to be reduced by 10.6 counts over
the initial geometry. Due to the improvement of drag, the block fuel of optimized_mod is reduced by

3.6 percent.
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The present optimization is probably incomplete because only the small number of the generations
has been performed. In addition, the automatic mesh generator may clip the design space severely. In
the present MDO system, surface spline function of the geometry deviation is used for the
modification of the wing surface mesh, and then the volume mesh is modified accordingly by the
unstructured dynamic mesh method. However, this process made the surface mesh distorted around
the leading edge. This mesh generation might be the primary reason for the difficulty in finding the
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non-gull geometry. However, the present result demonstrates that data mining can produce a good
design even from the results of the incomplete optimization.

4 CONCLUBDING REMARKS

A new approach, MODE, has been presented to address MDO problems. MODE is not intended to
give an optimal solution. MODE reveals the structure of the design space from the trade-off
information and visualizes it as a panorama for DM. DM will know the reason for trade-offs from non-
dominated designs, instead of receiving an optimal design without trade-off information.

The main empbhasis of this approach is visual data mining. The data mining results are presented for
the high fidelity MDO problem of a regional-jet wing. It optimizes aerodynamic performance and
structural weight under aeroelastic constraints. Because the design space was large and high fidelity
simulation codes were time-consuming, ARMOGA was used to explore the design space briefly. The
optimization was stopped after improvements were obtained. Then, SOM was applied to visualize the
design space. Based on the observation, a new, better wing design has been suggested. This illustrates
the importance of the present approach because design knowledge can produce a better design even
from the brief exploration of the design space. ' ‘

Although it is not discussed in this paper, the flowchart of MODE shown in Fig. 4 has feedback
loops. The design space can be redefined by analyzing the surrogate model[11]. Moreover, from data
mining, competing objectives and active constraints can be identified. This will lead to the re-
definition of the MDO problem itself. MDO often uses conceptual performance equations as design
objectives. However, sensitivities of those equations to high fidelity simulation codes are not well
understood. As more and more high fidelity simulation codes become available to MDO, selection of
objective functions will become more crucial. '
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