• Title/Summary/Keyword: Multi-Input and Multi-Output Control

Search Result 290, Processing Time 0.025 seconds

Robust sliding mode control of nonlinear uncertain system via geometric approach (기하학적 접근에 의한 비선형 불확실성 시스템에 대한 강건한 슬라이딩 모드 제어)

  • 박동원;김우철;김정식;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1213-1218
    • /
    • 1993
  • Variable structure control is applied to the robust output tracking control problem of general nonlinear multi-input multi-output (MIMO) systems. Using the concept of relative degree and minimum phase, input/output(I/O) linearization is undertaken. For I/O the linearized system, a new sliding hyperplanes design method is proposed. In this procedure, we can construct very robust and efficient sliding mode controller for general nonlinear systems of relative degree higher than two. The control results are illustrated by adopting a numerical example.

  • PDF

A NOVEL MULTI-INPUT MULTI-OUTPUT FUZZY CONTROLLER

  • Huaguang, Zhang;Bien, Zeungnam;Yinguo, Piao
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.194-198
    • /
    • 1998
  • A novel fuzzy basis function vector- based adaptive control approach for Multi-input and Multi-output(MIMO) system is presented in this paper, in which the nonlinear plants is first linearised, the fuzzy basis function vector is then introduced to adaptively learn the upper bound of the system uncertainty vector, and its output is used as the paramenters of the compensator in the sense that both the robustness and the asymptotic error convergence can be obtained for the closed loop nonlinear control system.

  • PDF

MAC for MIMO Nonlinear System with Delayed Input (시간지연 MIMO 비선형시스템의 MAC 제어기 설계)

  • Zhang, Yuanliang;Kim, Hong-Chul;Chong, Kil-To
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.52-60
    • /
    • 2009
  • This paper proposes a digital controller for a nonlinear multi-input/multi-output(MIMO) system with time-delayed input. A nonlinear system with multi-input time delay is discretized using Taylor's discretization method, and the discretized system can be converted into a general nonlinear system. Consequently, general nonlinear controller synthesis can be applied to the discretized time-delay system We adopted MAC controller synthesis and verified the performance of the proposed method by conducting computer simulations. The results of the simulation showed that the proposed controller synthesis performs well and the proposed method is useful for controlling a nonlinear time-delay system.

Development of negative Input Shaping Technique for MIMO System (다중 입출력 시스템을 위한 음의 입력다듬기 기법의 개발)

  • Yun, Seung-Kook;Chang, Pyung-Hun;Park, Juyi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.12
    • /
    • pp.1045-1052
    • /
    • 2000
  • In this paper, we propose a method to apply the Input Shaping Technique (IST) to multi-input multi-output (MIMO) systems. In MIMO systems, there is a high possibility of multi-mode residual vibration. The IST filter designed for this multi mode may need a longer time to suppress the residual vibration. Previous works prove that we can shorten the time lag by using negative sequence. This negative sequence, however, causes another problem - it requires excessive control input. In this paper, we provide a remedy to reduce the size of control input by limiting the reference input by limiting the reference input and its derivative. The result of simulations and experiments on a 2 link flexible arm confirmed the effectiveness of the proposed method.

  • PDF

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF

Indoor Temperature Control of an Air-Conditioning System Using Model Predictive Control (모델예측제어를 이용한 에어컨 시스템의 실내온도 제어)

  • Jo, Hang-Cheol;Byeon, Gyeong-Seok;Song, Jae-Bok;Jang, Hyo-Hwan;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.467-474
    • /
    • 2001
  • The mathematical model of a air-conditioning system is generally very complex and difficult to apply to controller design. In this paper, simple models applicable to the controller design are obtained by modeling the air-conditioning system by single-input single-output between compressor speed and indoor temperature, and by multi-input single-output between compressor speed, indoor fan speed and indoor temperature. Using these empirical models, model predictive control(MPC) technique was implemented for indoor temperature control of the air-conditioning system. It has been shown from various experiments that the indoor temperature control based on the MPC scheme yields reasonably good tracking performance with smooth changes in plant inputs. this multi-input multi-output MPC approach can be extended to multi air- conditioning systems where the conventional PID control scheme is very difficult to apply.

A Wide Input Range Active Multi-pulse Rectifier For Utility Interface Of Power Electronic Converters

  • Hahn Jaehong;Enjeti Prasad N.;Park In-Gyu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.512-517
    • /
    • 2001
  • In this paper, a wide input range active multi-pulse rectifier for utility interface of power electronic converters is proposed. The scheme combines multi-pulse method using a V-A transformer and boost rectifier modules. A current control scheme for the rectifier modules is proposed to achieve sinusoidal line currents in the utility input over a wide input range of input voltage and output load conditions. A design example is included for a 208V to 460V input, $700V_{dc}$ do 10kW output rectifier system. Simulation results are shown.

  • PDF

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

Nonlinear Excitation Control Design of Generator Based on Multi-objective Feedback

  • Chen, Dengyi;Li, Xiaocong;Liu, Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2187-2195
    • /
    • 2018
  • In order to realize the multi-objective control of single-input multi-output nonlinear differential algebraic system (NDAS) and to improve the dynamic characteristics and static accuracy, a design method of nonlinear control with multi-objective feedback (NCMOF) is proposed, the principium of this method to arrange system poles, as well as its nature to coordinate dynamic characteristics and static accuracy of the system are analyzed in detail. Through NCMOF design method, the multi-objective control of the system is transformed into linear space, and then it is effectively controlled under the nonlinear feedback control law, the problem to balance all control objectives caused by less input and more output of the system thus is solved. Applying NCMOF design method to generator excitation system, the nonlinear excitation control law with terminal voltage, active power and rotor speed as objective outputs is designed. Simulation results show that NCMOF can not only improve the dynamic characteristics of generator, but also damp the mechanical oscillation of a generator in transient process. Moreover, NCMOF can control the terminal voltage of the generator to the setting value with no static error under typical disturbances.

Bond graph modeling and multivariable control of maglev system with a combined lift and guidance (편심배치방식 자기부상 시스템의 본드선도 모델링 및 다변수 제어)

  • 박전수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1091-1097
    • /
    • 1991
  • A logical and systematic procedure to derive a mathematical model for magnetically levitation(maglev) systems with a combined lift and guidance is developed by using and graph. First, bond graph is constructed for the energy-feeding system with magnetic leakage flux. And, the overall maglev system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond notations. Finally, the LQG/LTR control systems are designed for single-input single-output and for multi-input multi-output maglev systems. In this paper, it has been shown that the bond graph is an excellent method for modeling multi-energy domain systems such as maglev systems and the multivariable control system is required to improve the performance of the maglev system with a combined lift and guidance.

  • PDF