• Title/Summary/Keyword: Multi-Hop

Search Result 788, Processing Time 0.026 seconds

Vehicle-to-Vehicle Broadcast Protocols Based on Wireless Multi-hop Communication (무선 멀티 홉 통신 기반의 차량간 브로드캐스트 프로토콜)

  • Han, Yong-Hyun;Lee, Hyuk-Joon;Choi, Yong-Hoon;Chung, Young-Uk
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.4
    • /
    • pp.53-64
    • /
    • 2009
  • Inter-vehicular communication that propagates information without infrastructures has drawn a lot of interest. However, it is difficult to apply conventional ad-hoc routing protocols directly in inter-vehicular communication due to frequent changes in the network topology caused by high mobility of the vehicles. MMFP(Multi-hop MAC Forwarding) is a unicast forwarding protocol that transport packets based on the reachability information instead of path selection or position information. However, delivering public safety messages informing road conditions such as collision, obstacles and fog through inter-vehicular communication requires broadcast rather than unicast since these messages contain information valuable to most drivers within a close proximity. Flooding is one of the simplest methods for multi-hop broadcast, but it suffers from reduced packet delivery-ratio and high transmission delay due to an excessive number of duplicated packets. This paper presents two multi-hop broadcast protocols for inter-vehicular communication that extend the MMFP. UMHB(Unreliable Multi-Hop Broadcast) mitigates the duplicated packets of MMFP by limiting the number of nodes to rebroadcast packets. UMHB, however, still suffers from low delivery ratio. RMHB(Reliable Multi-Hop Broadcast) uses acknowledgement and retransmission in order to improve the reliability of UMHB at the cost of increase in transmission delay, which we show through simulation is within an acceptable range for collision avoidance application.

  • PDF

Dual-hop Routing Protocol for Improvement of Energy Consumption in Layered WSN Sensor Field

  • Song, Young-Il;LEE, WooSuk;Kwon, Oh Seok;Jung, KyeDong;Lee, Jong-Yong
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.27-33
    • /
    • 2016
  • This paper proposes to increase the node energy efficiency, which rapidly drops during the transmission of L-TEEN (Layered Threshold sensitive Energy Efficient sensor Network protocol), using the method of DL-TEEN (Dual-hop Layered TEEN). By introducing dual-hop method in the data transmission, the proposed single-hop method for short-range transmission and multi-hop transmission method between the cluster heads for remote transmission was introduce. By introducing a partial multi-hop method in the data transmission, a single-hop method for short range transmission method between the cluster heads for remote transmission was introduces. In the proposed DL-TEEN, the energy consumption of cluster head for remote transmission reduces and increases the energy efficiency of sensor node by reducing the transmission distance and simplifying the transmission routine for short-range transmission. As compared the general L-TEEN, it was adapted to a wider sensor field.

Hierarchical WSN Dual-hop Routing Protocol for Improvement of Energy Consumption

  • Park, SeaYoung;LEE, WooSuk;Kwon, Oh Seok;Jung, KyeDong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.24-37
    • /
    • 2016
  • This paper proposes to increase the efficiency of energy in nodes, which rapidly drops during the transmission of the Low Energy Adaptive Clustering Hierarchy (LEACH), through the use of dual-hop layered application in the sensor field. Along with introducing the dual-hop method in the data transmission, the proposed single-hop method for short-range transmission and multi-hop transmission method between the cluster heads for remote transmission were also introduced. Additionally, by introducing a partial multi-hop method in the data transmission, a single-hop method for short range transmission method between the cluster heads for remote transmission was used. In the proposed DL-LEACH, the energy consumption of the cluster head for remote transmission reduced, as well as increased the energy efficiency of the sensor node by reducing the transmission distance and simplifying the transmission route for short-range transmission. As compared the general LEACH, it was adapted to a wider sensor field.

Study on Relaying Path Selection Using One-Hop Channel Information in Decode-and-Forward Relaying Based Multi-Hop Systems (디코딩 후 전달 중계 기반 다중 홉 시스템에서 하나의 홉 채널 정보를 이용하는 중계 경로 선택 기법 연구)

  • Lee, In-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.3
    • /
    • pp.87-95
    • /
    • 2013
  • In this paper, the outage probability of efficient partial relay selection(EPRS) using only one-hop channel information in multi-hop systems is analyzed in Rayleigh fading channels. In particular, we derive an exact and closed-form expression for the outage probability of decode-and-forward relaying based EPRS. In order to prove the usefulness of EPRS in multi-hop systems, we also analyze the correlation between the end-to-end signal-to-noise ratio(SNR) and the SNR for each hop at an arbitrary relaying path. Furthermore, through numerical investigation, we compare the outage performances for EPRS and the best relay selection using all channel information.

A Network Coding-Aware Routing Mechanism for Time-Sensitive Data Delivery in Multi-Hop Wireless Networks

  • Jeong, Minho;Ahn, Sanghyun
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1544-1553
    • /
    • 2017
  • The network coding mechanism has attracted much attention because of its advantage of enhanced network throughput which is a desirable characteristic especially in a multi-hop wireless network with limited link capacity such as the device-to-device (D2D) communication network of 5G. COPE proposes to use the XOR-based network coding in the two-hop wireless network topology. For multi-hop wireless networks, the Distributed Coding-Aware Routing (DCAR) mechanism was proposed, in which the coding conditions for two flows intersecting at an intermediate node are defined and the routing metric to improve the coding opportunity by preferring those routes with longer queues is designed. Because the routes with longer queues may increase the delay, DCAR is inefficient in delivering real-time multimedia traffic flows. In this paper, we propose a network coding-aware routing protocol for multi-hop wireless networks that enhances DCAR by considering traffic load distribution and link quality. From this, we can achieve higher network throughput and lower end-to-end delay at the same time for the proper delivery of time-sensitive data flow. The Qualnet-based simulation results show that our proposed scheme outperforms DCAR in terms of throughput and delay.

A Cost-Aware Multi-path DSDV Routing Protocol in Wireless Mesh Networks (무선 메쉬 네트워크에서 비용 인지 다중 경로 DSDV 라우팅 프로토콜)

  • Lee, Seong-Woong;Chung, Yun-Won
    • The KIPS Transactions:PartC
    • /
    • v.15C no.4
    • /
    • pp.289-296
    • /
    • 2008
  • In wireless mesh network, studies on routing protocols have been actively carried out recently, and hop count is used as a major routing metric in destination-sequenced distance-vector (DSDV) routing protocol, which is a representative proactive routing protocol. Although hop-by-hop multi-path (HMP) DSDV and enhanced HMP (EHMP) DSDV routing protocols perform routing by considering both hop count and residual bandwidth within one hop distance nodes, it has a shortcoming that routing is carried out via non-optimal path from the aspect of end-to-end routing. In order to overcome the shortcoming, a cost-aware multi-path (CAMP) DSDV routing protocol is proposed in this paper, which considers hop count and end-to-end minimum residual bandwidth. Simulation results based on NS-2 show that the proposed routing protocol performs better than DSDV, HMP DSDV, and EHMP DSDV protocols from the aspect of throughput and packet delivery ratio, by appropriately using hop count and end-to-end minimum residual bandwidth information and has the same number of management messages with HMP DSDV and EHMP DSDV protocols.

A Study on Cluster Lifetime in Multi-HopWireless Sensor Networks with Cooperative MISO Scheme

  • Huang, Zheng;Okada, Hiraku;Kobayashi, Kentaro;Katayama, Masaaki
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.443-450
    • /
    • 2012
  • As for cluster-based wireless sensor networks (WSNs), cluster lifetime is one of the most important subjects in recent researches. Besides reducing the energy consumptions of the clusters, it is necessary to make the clusters achieve equal lifetimes so that the whole network can survive longer. In this paper, we focus on the cluster lifetimes in multi-hop WSNs with cooperative multi-input single-output scheme. With a simplified model of multi-hop WSNs, we change the transmission schemes, the sizes and transmission distances of clusters to investigate their effects on the cluster lifetimes. Furthermore, linear and uniform data aggregations are considered in our model. As a result, we analyze the cluster lifetimes in different situations and discuss the requirements on the sizes and transmission distances of clusters for equal lifetimes.

The Security DV-Hop Algorithm against Multiple-Wormhole-Node-Link in WSN

  • Li, Jianpo;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2223-2242
    • /
    • 2019
  • Distance Vector-Hop (DV-Hop) algorithm is widely used in node localization. It often suffers the wormhole attack. The current researches focus on Double-Wormhole-Node-Link (DWNL) and have limited attention to Multi-Wormhole-Node-Link (MWNL). In this paper, we propose a security DV-Hop algorithm (AMLDV-Hop) to resist MWNL. Firstly, the algorithm establishes the Neighbor List (NL) in initialization phase. It uses the NL to find the suspect beacon nodes and then find the actually attacked beacon nodes by calculating the distances to other beacon nodes. The attacked beacon nodes generate and broadcast the conflict sets to distinguish the different wormhole areas. The unknown nodes take the marked beacon nodes as references and mark themselves with different numbers in the first-round marking. If the unknown nodes fail to mark themselves, they will take the marked unknown nodes as references to mark themselves in the second-round marking. The unknown nodes that still fail to be marked are semi-isolated. The results indicate that the localization error of proposed AMLDV-Hop algorithm has 112.3%, 10.2%, 41.7%, 6.9% reduction compared to the attacked DV-Hop algorithm, the Label-based DV-Hop (LBDV-Hop), the Secure Neighbor Discovery Based DV-Hop (NDDV-Hop), and the Against Wormhole DV-Hop (AWDV-Hop) algorithm.

Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

  • Shin, Min-Ho;Arbaugh, William A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.1
    • /
    • pp.5-25
    • /
    • 2009
  • In recent years the popularity of multi-hop wireless networks has been growing. Its flexible topology and abundant routing path enables many types of applications. However, the lack of a centralized controller often makes it difficult to design a reliable service in multi-hop wireless networks. While packet routing has been the center of attention for decades, recent research focuses on data discovery such as file sharing in multi-hop wireless networks. Although there are many peer-to-peer lookup (P2P-lookup) schemes for wired networks, they have inherent limitations for multi-hop wireless networks. First, a wired P2P-lookup builds a search structure on the overlay network and disregards the underlying topology. Second, the performance guarantee often relies on specific topology models such as random graphs, which do not apply to multi-hop wireless networks. Past studies on wireless P2P-lookup either combined existing solutions with known routing algorithms or proposed tree-based routing, which is prone to traffic congestion. In this paper, we present two wireless P2P-lookup schemes that strictly build a topology-dependent structure. We first propose the Ring Interval Graph Search (RIGS) that constructs a DHT only through direct connections between the nodes. We then propose the ValleyWalk, a loosely-structured scheme that requires simple local hints for query routing. Packet-level simulations showed that RIGS can find the target with near-shortest search length and ValleyWalk can find the target with near-shortest search length when there is at least 5% object replication. We also provide an analytic bound on the search length of ValleyWalk.

Performance Evaluation of Multi-Hop Transmissions in IEEE 802.15.6 UWB WBAN (IEEE 802.15.6 UWB WBAN에서 다중 홉 전송에 대한 성능 평가)

  • Kim, Ho-Sung;Hwang, Ho Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1313-1319
    • /
    • 2017
  • In this paper, we evaluate the performance of multi-hop transmissions in IEEE 802.15.6 ultra wide band (UWB) wireless body area network (WBAN). The packet structure in the physical layer, and encoding and decoding are considered for multi-hop transmissions in IEEE 802.15.6 UWB WBAN. We analyze the data success rate and energy efficiency of multi-hop transmissions with considering the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Through simulations, we evaluate the data success rate and energy efficiency of multi-hop transmissions with varying the length of data payload, transmission power, and distances between the nodes in IEEE 802.15.6 UWB WBAN. Finally, we can select an energy-efficient multi-hop transmission in IEEE 802.15.6 UWB WBAN depending on the length of data payload, transmission power, and distances between the nodes.