
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 5
Copyright ⓒ 2009 KSII

We would like to express our great thanks to the Editor and unknown reviewers’ very active and quick review
process. We believe that their detailed review has enhanced the quality of our paper.

DOI: 10.3837/tiis.2009.01.001

Efficient Peer-to-Peer Lookup in Multi-hop
Wireless Networks

Minho Shin1 and William A. Arbaugh2

1Institute for Security, Technology, and Society, Dartmouth College, Hanover, NH, USA
[e-mail: mhshin@cs.dartmouth.edu]

2Computer Science Department, University of Maryland, College Park, MD, USA
[e-mail: waa@cs.umd.edu]

*Corresponding author: William A. Abraubgh

Received Jan 06, 2009; revised January 28, 2009; accepted January 29;
published February 23, 2009

Abstract

In recent years the popularity of multi-hop wireless networks has been growing. Its flexible
topology and abundant routing path enables many types of applications. However, the lack of
a centralized controller often makes it difficult to design a reliable service in multi-hop
wireless networks. While packet routing has been the center of attention for decades, recent
research focuses on data discovery such as file sharing in multi-hop wireless networks.
Although there are many peer-to-peer lookup (P2P-lookup) schemes for wired networks, they
have inherent limitations for multi-hop wireless networks. First, a wired P2P-lookup builds a
search structure on the overlay network and disregards the underlying topology. Second, the
performance guarantee often relies on specific topology models such as random graphs, which
do not apply to multi-hop wireless networks. Past studies on wireless P2P-lookup either
combined existing solutions with known routing algorithms or proposed tree-based routing,
which is prone to traffic congestion. In this paper, we present two wireless P2P-lookup
schemes that strictly build a topology-dependent structure. We first propose the Ring Interval
Graph Search (RIGS) that constructs a DHT only through direct connections between the
nodes. We then propose the ValleyWalk, a loosely-structured scheme that requires simple
local hints for query routing. Packet-level simulations showed that RIGS can find the target
with near-shortest search length and ValleyWalk can find the target with near-shortest search
length when there is at least 5% object replication. We also provide an analytic bound on the
search length of ValleyWalk.

Keywords: Multi-hop wireless networks, peer-to-peer search, simulations, mathematical
analysis

6 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

1. Introduction

Multi-hop wireless network can provide a flexible network service to wireless nodes spread
over a certain area. Through a series of direct connections, distant nodes can indirectly
communicate when they are beyond their radio coverage. Mesh-like connections between
neighboring nodes enables multiple choices in choosing paths to the destination for data
packets. Among applications of multi-hop wireless networks are wireless mesh networks,
sensor networks, and vehicular ad-hoc networks. However, the lack of a centralized controller
in those networks often makes it difficult to design a reliable service. Design of packet routing,
for instance, has been a major challenge in multi-hop wireless networks for a couple of
decades. Recently, data discovery in multi-hop wireless network has received attention as an
application in multi-hop wireless networks [1][2][3][4][5]. In particular, one interesting
question is whether it is possible to build a reliable peer-to-peer (P2P) file-sharing system in a
wireless domain, likely suggested by the past success of Internet P2P file-sharing [5]. For
distributed file sharing, a peer-to-peer lookup service is crucial. Using a P2P-lookup service,
each node (or a peer) can request a target object that is stored within some other node (also a
peer); each node can act as both a client (requesting data) and a server (serving data), even
simultaneously if needed. This paper attempts to take an early step toward the design of a
reliable wireless P2P-lookup service.

For the design of a wireless P2P-lookup, it is natural to apply the many existing P2P-lookup
solutions originally intended for wired networks. The distributed hash table (DHT)
[6][7][8][9][10] is regarded as an efficient and reliable P2P-lookup technology because of its
highly structured design. Although DHTs may seem applicable at first, their
topology-independent design makes DHTs inappropriate for multi-hop wireless networks.
Because of radio interference and limited bandwidth, a multi-hop wireless network is more
likely to delay or even fail packet delivery, as data travels more wireless links
[11][12][13][14][15][16]. As DHTs disregard the underlying physical topology, they tend to
suffer from a long search delay and a low search success rate. This is because a query message
that only travels a few links in the DHT structure can travel multiple wireless links in the
underlying wireless network. Although many topology-aware DHT schemes exist
[17][18][19][20][21][22], DHTs are not primarily concerned with physical locality in their
structure.

Other kinds of existing P2P-lookup are loosely-structured and unstructured approaches.
Unlike DHTs, these do not build a global search structure. Instead, they guide the query
message to the destination with local hints (loosely-structured) [23][24][25] or with blind
attempts (unstructured) [26][27]. While the unstructured approach works poorly for multi-hop
wireless networks due to link vulnerability, the loosely-structured approach is more adaptable.
However, the analytic claims on unstructured and loosely-structured solutions
[23][24][26][27] often make topological assumptions that are incompatible with multi-hop
wireless networks; small world [28], power law [29], Gnutella network, or random graph
models are assumed, while a multi-hop wireless network is best characterized by a random
geometric graph [30]. For example, the mixing time analysis of a random walk found in
[31][32][24] does not apply to random geometric graphs.

Some past work has explored the wireless P2P-lookup problem. Most works, however,
proposed flooding-based solutions [33][34][35][36]. However, flooding scales poorly in
multi-hop wireless networks. Many non-flooding solutions assume that nodes are aware of

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 7

their locations and use geographic routing [1][2]. Other schemes build on tree structures,
either by combining an existing DHT with an existing routing algorithm [3][4], or by
designing their own structure [5]. Tree-based routing, however, has a tendency to forward
query traffic to the links close to the root of the tree, and cause congestion on those links. Aly
and Elnahas [37] proposed a hybrid method; their approach is closer to hierarchical approach
than peer-to-peer approach (similar to the first generation P2P services, e.g., Napster).

In this paper, we focus on the wireless P2P-lookup problem; given a multi-hop wireless
network and a set of objects, we assign each object to a node (or multiple nodes if desired)
such that any node can find the object with the following properties:

 Decentralization: every node acts as both data requester and data provider,
 Load balance: each node can store an object with similar probability.
 Efficiency: every node can find (a copy of) an object as close as possible,
 Scalability: the scheme scales well with higher query rates.

In this work, instead of small ad-hoc networks with high mobility, we focus on relatively
stable but large scale multi-hop wireless networks (such as a wireless mesh network in an
urban area consisting of more than one hundred nodes). Large-scale is more challenging for
P2P lookup services because flooding- or randomwalk-based schemes hardly work and
search-optimization is critical because of large network diameter and inherently high query
rates. Therefore, we assume the network has little mobility but query load is high.

We propose two wireless P2P-lookup schemes: a DHT scheme Ring Interval Graph Search
(RIGS) and a loosely-structured scheme ValleyWalk. The RIGS builds a topology-dependent
DHT structure such that one-hop neighbors in the structure are also one-hop neighbors in the
underlying physical topology. Using the same design principle, ValleyWalk uses a simple
heuristic to forward the query message to a neighbor node that is closer to the destination.
Unlike RIGS, ValleyWalk is loosely-structured, and a simple hint about the destination guides
the message to its destination. Both schemes use only local information and a global
parameter.

We evaluate our scheme via packet-level simulations (using ns2 [38]) and make a
comparison with the optimal solution and existing schemes. The results show that RIGS
always guarantees successful search through near-shortest paths. ValleyWalk also finds the
target through near-shortest paths when there are a moderate number of object copies in the
network (i.e., 5% object replication). We also provide a mathematical analysis for finding
upper-bounds on the search length of ValleyWalk. Our bound is significantly tighter than
existing analysis given by Morselli et al. [24]. Our schemes, however, focus on static networks
where the topology of the network does not dynamically change over time.

In the next section, we discuss existing P2P-lookup schemes that are not discussed in this
section. In the following two sections, we describe RIGS (Section 3) and ValleyWalk (Section
4) in more detail. In Section 5 we present simulation results and in Section 6 we analyze the
performance of ValleyWalk. We conclude in Section 7.

2. Related Work

In this section, we discuss existing distributed P2P lookup schemes not discussed in the
previous section.

Breadth first search (BFS). Breadth first search requires no structure or topology control;
the querying node floods the network within a certain hop distance hoping to hit the target [39].
Although flooding is simple and may find the closest copy of the target, the broadcast query
messages can overload the network links. We can limit the flooding area, but finding the

8 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

optimal flooding radius is not trivial [27]. Iterative deepening [40], Directed BFS, and Local
indices are suggested to reduce the message overhead. The BFS method, however, is
undesirable for multi-hop wireless networks, because of the limited bandwidth and
interference.

Depth first search (DFS). The requesting node sends a single query message to one of its
neighbors and each neighbor in turn forwards the query to one of its neighbors, until we hit a
copy of the target object. Random-walk is a well-known DFS scheme where each node
uniformly chooses a neighbor at random. Although the message overhead is minimal, the
response time is high. The k-random-walk improves the response time by starting k
independent random-walks simultaneously, but it can be costly to stop other random-walks
when a random-walk finds a target. DFS is also undesirable in multi-hop wireless networks,
because of its high response time.

Loosely-structured search. Loosely structured search leaves hints of the target locations
throughout the network and uses those hints for searching the object. For example, FreeNet
[23] uses history-based hints, Yappers [25] uses partition-based hints, and LMS [24] uses the
node-to-object distance in the hash-space. Loosely-structured searching has little or no control
over the topology, and thus can work in multi-hop wireless networks without significant
modification. Our ValleyWalk uses a similar approach with LMS, but our searching algorithm
significantly improved the search performance in multi-hop wireless networks.

Distributed hash table (DHT). The DHT-based scheme adds a significant amount of
structure by closely coupling its overlay network topology and the placement of objects. DHTs
such as CAN [8], Pastry [9], Chord [7], Tapestry [10], and Kademlia [6] can provide
theoretical bounds on the worst-case performance and can guarantee successful search.

3. RIGS: Ring Interval Graph Search
RIGS is fully structured and carefully designed to find the closest target object. RIGS uses a
novel search structure Ring Interval Graph with Shortest Interval Searching algorithm. The
structure is built by a distributed algorithm during the initialization phase. Each node is only
required to know the local information in order to forward search queries to destinations.
RIGS is designed for stable multi-hop wireless networks (i.e., less mobility).

3.1 Hash space
RIGS uses the circular hash space used by Chord [7]. We simplify the original system using the
assumption of continuity for the hash space; the hash-space is a continuous real interval [0,1)
instead of a discrete set {0, 1,..., 2m}. As in Chord, we visualize the hash space as a unit-length
circle where 0 and 1 meet at the same point and the values increase in the clockwise direction.

Each object is hashed to the hash space [0,1) and the hashed value is called a key. Each node
is assigned a node-id in [0,1) by the RIGS algorithm. Each key is assigned to the node, viz.,
key-holder, for which the node-ID is equal to or greater than the key value in the hash space.
Unlike other consistent-hashing systems that assign node-IDs at random, RIGS carefully
chooses the node-ID such that the assignment generates a Ring Interval Graph.

3.2 Ring Interval Graph
In order to assign node-IDs, RIGS builds a distributed data structure called Ring Interval
Graph. Let us first define ring interval and then define Ring Interval Graph. In this paper, vi
denotes both the node itself and the assigned node-ID.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 9

A ring interval (a, b] is a segment of the hash ring starting at a (excluding a) and ending at
b (including b) in the clockwise direction. If a ring interval (a, b] contains zero, the interval is
the union of two real intervals (a,1) and [0,b]. For example, if v8 > v0> 0, then (v8, v0] = {x | v8
< x < 1 or 0 ≤ x ≤ v0 }. For brevity, we write x→y if there is no node-ID assgined in (x, y). A
node-set {vi, vi+1, …, vi+k} induces the ring interval (vi-1, vi+k] if vi-1→vi→vi+1→ …→vi+k where
vi-1 is the preceding node of vi. In Fig. 1, {v8, v9, v10, v11, v0} induces the ring interval (v7, v0].
Note that one node {vi} induces the ring interval (vi-1, vi].

Fig. 1. Ring Interval Graph

Definition 3.1 Given a network graph G = (V, E), a Ring Interval Graph (RIG) is an acyclic
undirected subgraph GRIG = (V, ERIG) where ERIG⊆E and each node is assigned a node-ID such
that any one-cut (removal of one edge) of GRIG partitions the graph into two subgraphs G1=(V1,
E1) and G2=(V2, E2), such that V1 induces R1, V2 induces R2, and R1 and R2 partition the hash
space (i.e., R1∩R2 = Ø and R1∪R2= (0,1]).

Fig. 1-(center) shows a Ring Interval Graph of a 12-node graph. Their node-IDs are placed

in the hash space at the corners of the figure. Without loss of generality, we assume that the
nodes are placed in the order of the node index, in the clockwise direction. In Fig. 1-(top left
corner), the removal of the edge (v0, v1) partitions the ring into two subgraphs with node-set
{v8, …, v11, v0} and {v1, …, v7}. The hash space is partitioned into their induced ring intervals
[v7, v0) and [v0, v7), respectively. Likewise, the figure illustrates the partition of the graph when
edge (v1, v2) or (v1, v4) are removed. As Fig. 1-(bottom right coner) concisely illustrates, node
v1 can decide to which neighbor it should forward the query, by checking which interval the

10 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

target key belongs to. We build a routing table based on the ring interval information.

Interval table. Given the aforementioned partition information, we build a routing structure

as follows. Let Nb(v) denote the neighbor set of node v and Nb+(v) = Nb(v)∪{v} be the
expanded neighbor set. Suppose u∈Nb(v). Then, edge (v, u) partitions the hash-space into two
ring intervals, one of which includes v and the other which includes u. Let u

vI be one of the ring

intervals that includes node u. For example, in Figure 1,],(],,(0773
0

1

4

1
vvIvvI v

v
v
v == , and

],(311
2 vvI v

v = . Let us also define],(vvI p
v
v = , where vp is the preceding node of v in the hash

space. For example,],(10
1

1
vvI v

v = . Note that if 1

1

v
vIk∈ , then node v1 has the key and the

search terminates. Then, the interval-table or i-table of node v is i-table(v)
)}(|{ vNbuI u

v
+∈= .

For example, in Fig. 1, i-table(v1)]},(],,(],,(],,{(},,,{ 73311007
4

1

2

1

1

1

0

1
vvvvvvvvIIII v

v
v
v

v
v

v
v == .

In practice, each node builds a list of <val, node> sorted according to val, where val is the
ending value of each interval and node is the neighbor node associated with that interval. In
Fig. 1, i-table(v1) = (<v0, v0>, <v1, v1>, <v3, v2>, <v7, v4>).

Basic routing. Given the i-table, each node can forward queries to a neighbor who is closer
to the destniation on the Ring Interval Graph. Suppose we are given a query for key k. The
node first finds an interval that contains the key. For example, node v1 finds that

4

1
],(73

v
vIvvk =∈ . Then, the node forwards the query to the neighbor node associated with that

interval. In our example, v1 forwards to node v4.
Basic routing, however, limits the traffic on the Ring Interval Graph, which is a spanning

subgraph of the original graph. Subgraph routing, however, causes traffic congestion along the
subgraph edges, while edges outside the subgraph remain idle. Subgraph routing also fails to
find the shortest path and often causes a detour. In Fig. 1, the basic routing algorithm will
deliver the query of],(73 vvk∈ through the path (v1, v4, v5, v6). However, it is likely that node
v1 and v6 are one-hop neighbors in the original graph, and thus the query can be delivered in
one-hop path (v1, v6). In the following section, we describe how RIGS can use the Ring Interval
Graph to overcome the drawbacks of basic routing, and achieve near-shortest path routing.

3.3 Shortest Interval Search
Although basic routing with i-table can route queries to destinations, the message path is
limited to the spanning subgraph, which wastes edges outside the subgraph. Shortest interval
search enables RIGS to use all the edges in the network and, more importantly, achieve
near-shortest routing.

In brief, each node collects i-tables of neighbor nodes and for routing, the node selects the
shortest ring interval containing the key in those i-tables, and forwards the query to the
neighbor associated with the interval. Formally, let us define i*-table of node v as the set of all
intervals collected from neighbors’ i-tables, which is expressed as:

i*-table(v) { }}{\)(),(| vuNbwvNbuI w
u

+∈∈=

Given a key k, node v forwards the query to node u* such that:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 11

{ }w
u

w
u

w
u

vNbu
IktableiIIu ∈−∈=

∈
,:||minarg *

)(

*
.

Fig. 2 illustrates an example of Shortest Interval Search. Suppose we are given a network of
12 nodes {v0, v1, …, v11}. The node-ID assignment is shown in the graph and their values are
places in the hash space. In the graph, the solid edges represent the Ring Interval Graph, while
the dotted lines are the rest of the edges in the network. Suppose node v6 has collected the
i-tables of neighbor nodes v1, v4, and v5. When v6 receives a query for k such that k→v3, node v6
checks all the intervals in its i*-table and compares the length of the intervals that contain k:

],(31
1 vvI v = ,],(37

4 vvI v = , and],(46
5 vvI v = . Since 1vI has the shortest interval size (see

Fig. 2-(bottom left corner)), node v6 forwards the query message to node v1. Using the same
algorithm, node v1 forwards the query to v3, which is the destination.

Fig. 2. Shortest Interval Search

The following describes the Shortest Interval Search algorithm, which is executed when
node v does not have the key.

1. min := 1
2. for all u ∈Nb(v) do
3. for all w

uI ∈ i*-table(v) do

4. if w
uIk ∈ and || w

uI < min do
5. next-node := u
6. min := || w

uI
7. end if

12 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

8. end for
9. end for
10. v sends the query to next-node

Before we explain the rationale behind the algorithm, we first claim that following a shorter

ring interval leads to a shorter path on the Ring Interval Graph than longer intervals.

Theorem 3.1 Given a key k and two nodes v and v', let ∈u
vI i-table(v) and ∈''

u
vI i-table(v')

such that u
vIk ∈ and '

'
u
vIk ∈ . Then,

If u
v

u
v II ⊂'

' and u
v

u
v II ≠'

' , then distance(v', holder(k)) < distance(v, holder(k))

where distance(∙) is the hop count between two nodes on the Ring Interval Graph, and
holder(k) is the node that possesses key k.

Proof of Theorem 3.1. Suppose v∈

u
vI (equivalently, v = u). Then u

v
u
v II ='

' , a contradiction.

Therefore, v∉ u
vI v≠u. Then, the edge (v, u) partitions the network into two node-sets; the

nodes whose node-IDs are in u
vI and the nodes whose node-IDs are in R\ u

vI where R = [0, 1).
Any node from one partition cannot go to the other partition without passing the edge (v, u).

Suppose v' ∈ R\ u
vI . Then, every path from v' to the key-holder of k, which is in the other

partition, should pass the node v, i.e., v ∈ path(v', holder(k)). Since '
'

u
vIk ∈ , the key-holder of

k belongs to '
'

u
vI , and the path from v' to holder(k) is contained in '

'
u
vI . Therefore, v ∈ '

'
u
vI .

Since u
v

u
v II ⊂'

' , we get v∈
u
vI , a contradiction. Therefore, v'∈ u

vI .
Here we claim that v' is on the path from v to k, i.e., v' ∈ path(v, holder(k)). Suppose that this

is not the case; v' is not in path(v, holder(k)). Let w (≠v') be a common node of the paths from
v to holder(k) and from v' to holder(k), i.e., w∈ path(v, holder(k)) ∩ path(v', holder(k)). Since
w∈ '

'
u
vI , and v' is not in the path from v to w, v cannot be in R\ '

'
u
vI , thus v∈ '

'
u
vI . Since u

v
u
v II ⊂'

' ,

we get v∈ u
vI , a contradiction. Therefore, v' is on the path from v to holder(k).

Based on Theorem 3.1, the Shortest Interval Search algorithm always chooses a neighbor

that has the shortest ring interval containing the key. Although this choice only guarantees
progression towards the destination on the Ring Interval Graph, the use of all available
intervals in the vicinity finds short-cut paths beyond the Ring Interval Graph and avoids
detours. Experimental results show that such a heuristic can achieve near-shortest paths in
various settings.

3.4 Construction
Here we explain how we can construct a Ring Interval Graph of the given network topology.
The construction requires a spanning tree of the original graph. We can construct a spanning
tree via a depth-first or breadth-first graph traversal. We can also use one of the available
distributed spanning-tree algorithms [41][42][43].

Given a spanning tree, we assign each node a node-ID in an increasing order along the
depth-first traversal on the spanning tree. We assume that each node v knows the area of the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 13

hash space to which it was assigned, denoted by Lv, and ∑ =
v vL 1 . For ease of explanation,

we assume that the hash space is expanded to [0,n) where n is the number of nodes, and nodes
are assigned a uniform unit length interval, that is, Lv = 1. Since the assignment requires a
depth-first traversal of the graph, we can build a depth-first spanning tree simultaneously if
desired. However, in the algorithm description, we assume that a spanning tree is already
given.

(a) Original network graph (b) Assignment by DFS (c) Constructed RIG

Fig. 3. Construction of Ring Interval Graph

Fig. 3 shows an example construction of Ring Interval Graph. Suppose we are given a

network graph, as shown in Fig. 3-(a), where the node-IDs have not yet been assigned. The
construction algorithm starts with a randomly-chosen node and assigns zero as its node-ID,
then performs a depth-first traversal, as shown in Fig. 3-(b). In the figure, the number in
parenthesis denotes the order of visit. At the first visit of each node, the algorithm assigns a
node-ID, which increases by one at each assignment. The resulting tree becomes a Min-Heap
tree structure; all node-IDs of any subtree are greater than the node-ID of the root of the
subtree. This property enables the partitioning property of Ring Interval Graph described in
Definition 3.1. After assignment, only the edges of the depth-first traversal remain for the Ring
Interval Graph. Fig. 3-(c) shows the Ring Interval Graph that corresponds to the DFS. The
following construction algorithm is executed by v when it is the root node or when it receives
message x from node p

1. if v is a root node then
2. y := 0
3. else
4. y := x + Lv
5. i-table.add(<x, p>)
6. end if
7. node-id(v) := y
8. i-table.add(<y, v>)
9. for all u ∈ Nb(v) −{p} and u remains unvisited do
10. v sends u : “y”

14 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

11. wait v receives from u : “z”
12. i-table.add(<z, u>)
13. y := z
14. end for
15. if v is a not root node then
16. v sends p : “z”
17. end if

When node v receives x, which is the last assigned node-ID, it assigns itself a node-ID by

increasing x by its assigned area Lv. After adding i-table entries for p and v, it sends the last
assigned value y to each neighbor and waits until the neighbor finishes assignment of all its
descendent nodes. The returning value z is the last assigned value in the subtree of u. The node
v repeats this for unvisited neighbors. After assigning all nodes in its subtree, v sends z to the
parent node p. The construction ends when the root node receives reply messages from all
unvisited child nodes, and it finishes the algorithm without executing line 11.

4. ValleyWalk
ValleyWalk uses a simple forwarding algorithm with a lightweight local structure; “each node
forwards the query to the neighbor node that is the closest to the target object in the
hash-space”. Because of its minimal structure, ValleyWalk assumes that a moderate number
of object copies are available in the network. After describing the algorithm, we discuss the
difference between ValleyWalk and LMS [24].

4.1 Hash Space and Definitions
ValleyWalk uses the same hash-space as Chord, and we use the same notation used in Section
3. Unlike RIGS, we hash both objects and nodes to the hash-space, obtaining keys and
node-IDs, respectively. Let us define metrics to represent the relationship between nodes and a
key. Given a key k, we define key-hop-count of node v with respect to k, denoted by hopk(v), as
the number of nodes in the ring interval (k, v]. We also define key-distance of node v with
respect to k, denoted by distk(v), as the length of the ring interval (k, v], that is, the distance
from k to v in the clockwise direction. Fig. 4-(a) illustrates the definitions of hopk(v) and
distk(v). We state that node v is closer to k than node u if distk(v) < distk(u). As in Chord, key k
is stored in the closest node v, that is, hopk(v) = 1 or, equivalently, distk(v) < distk(u)1 for all
nodes u. In Fig. 4-(a), holder(k1) = v2, holder(k2) = v5, and holder(k3) = v7.

Given a key k, a node v is a local minimum with respect to k if v is the closest to the key
among its neighbors, that is, distk(v) < distk(u) for all u ∈ Nb(v). Fig. 4-(b) shows a network
with two local minima, node 0 and node 2, and arrows indicating the closest nodes to the key
among neighbor nodes. In LMS, keys are stored in local minima and each node forwards the
query to the neighbor who is the closest to the key among neighbors. In the figure, queries are
routed in the direction of the arrows. When we reach a local minimum but no key is found, a
random walk is performed to restart another local-minima search. In the following, we explain
ValleyWalk, which modifies LMS to achieve better performance.

1 We assume that no two nodes have the same node-ID.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 15

4.2 ValleyWalk

ValleyWalk performs a simple deterministic walk to search or store keys in the nodes. Each
node that receives a query for key k forwards the query to one of its unvisited neighbor nodes
that is closest to k. Formally, node v forwards the query for k to an unvisited node u* if

)(minarg
)(

* udistu k
vNbu∈

= .

In order to avoid loops, each node stores recent queries in its cache or records visited nodes
within the query. When a node finds that the query has already visited all its neighbor nodes, it
forwards the query to a randomly chosen neighbor. Fig. 5 illustrates the ValleyWalk. On the
left are the node-IDs placed on the hash space. Suppose node v8 receives a query for key k1.
According to the values of node-IDs, v0, v1, and v4 are local minima but only v0 holds k1.
Choosing the closest neighbor to k1 at each step, the query message reaches the destination
through path (v8 , v1, v3, v0). Note that unlike LMS, ValleyWalk continues with its deterministic
walk when it reaches an empty (i.e., no key) local minimum.

As an analogy, we can compare ValleyWalk to a hiking strategy in a mountain where the
hiker always chooses the direction towards the lowest area around the current position. The
hiking path can be either downhill or uphill (if the hiker has reached the bottom of a basin), and,
as a result, the hiker is likely to travel along the valleys between peaks.

Node v executes the following algorithm when it receives the query message for key k.

1. if v = holder(k) then
2. exit
3. end if
4. mindist := 1
5. next := ⊥
6. for all u ∈ Nb(v) s.t. u remains unvisited do
7. if distk(u) < mindist then
8. next-node := u
9. mindist := distk(u)
10. end if
11. end for

(a) Key distance (b) Local Minima
Fig. 4. Hashing for ValleyWalk and Local Minima

16 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

12. if next-node = ⊥ then
13. pick a random u ∈ Nb(v)
14. end if
15. send the query to next-node

Fig. 5. ValleyWalk

4.3 Key Assignment
Suppose we want to store r copies of each key in the network. Since ValleyWalk always
forwards the query to a node with a smaller key distance, ValleyWalk is inclined to move
towards local minima. Therefore, it is most efficient to store keys in local minima (as in LMS).
However, the number of local minima for a given key depends on the topology and node-IDs.
Let LMk be the set of local minima and |LMk| be the number of local minima in the network.
Since the probability is 1/(dv+1) that node v is a local minimum, where dv is the degree of node
v, the expected number of local minima is:

∑
∈ +

=
Vv v

k d
LME

1
1|][|

where V is the total node-set. Since the number of local minima may not equal the replication
number r, we store r copies of each key as follows.

We start with a ValleyWalk and whenever we reach a local minimum we store a copy of the
key in that node. If we can find r local minima, we stop. If we can no longer find a local
minimum (after a certain number of trials) and we still have copies of the key to store, then we
store the remaining copies in randomly chosen nodes with a series of random-walks. As a
result, it is possible to have both a local minimum node without a key and a key holder that is
not a local minimum.

The discrepancy between the local minima set and the key-holder set can cause overhead of
the search algorithm. In particular, a false positive, which involves hitting an empty local
minimum, is more harmful than a false negative, which involves hitting a non-local-minimum
and unexpectedly finding the key. In order to minimize the false positives, we can
intentionally decrease the number of local minima such that |LMk| < r. Since

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 17

1
|||][|

+
≤
δ

VLME k where δ is the minimum degree in the network, we can artificially

decrease the expected number of local minima by increasing the minimum node degree. Given
a target minimum degree δ*, nodes that have fewer degrees than δ* can expand their neighbor
sets by adding virtual links with (δ* - dv) 2-hop neighbor nodes. Adding a virtual link means
that the node creates imaginary edges to the 2-hop neighbors and asks them to send their
node-IDs. The expansion of the neighbor set creates an asymmetric relationship between
neighbors; node v considers node u as a neighbor, while node u does not consider v as a
neighbor. This asymmetry does not affect the correctness of the ValleyWalk. We do not
expand the neighbor-set beyond 2-hop neighbors, to avoid creating a local overlay-network
and increasing the search length.

4.4 ValleyWalk and LMS
LMS uses both the deterministic walk and random walk. The deterministic walk of LMS
forwards the query towards the neighbor with the smallest key distance among neighbors and
the current node (whereas ValleyWalk does not compare with the current node). Consequently,
LMS stops its search at any local minimum node (whereas ValleyWalk continues the search).
When LMS reaches an empty local minimum, LMS performs a random-walk, followed by
another deterministic walk, and it repeats this until it hits a target. In order to avoid continuous
arrival at the same local minimum (like a black hole), LMS doubles the length of the
random-walk each time. The characteristics of a random walk differ between a wired network
and a multi-hop wireless network. For instance, the analysis of the mixing time of the
random-walk presented in [24] assumes a random graph, which is not the case in multi-hop
wireless networks. Our simulation results show that by removing this random-walk from LMS
and by replacing the deterministic walk with ValleyWalk, we can achieve a significant
performance improvement in wireless P2P-lookup.

4.5 Analysis of ValleyWalk
In this section, we provide an analytic upper-bound of the search length of ValleyWalk. For
simplicity, we assume that |LMk| ≤ r, that is, every local minimum has a key. When |LMk| > r,
the additional search length when hitting empty local minima should be considered, and our
analysis does not cover that case.

We model ValleyWalk as a time series – a series of independent random variables on [0, 1).
Given a key k, let (v0, v1, v2, …) be a search path and (X0, X1, X2, …) be random variables for
the key distance of the nodes in the path, that is, Xi=distk(vi). By definition, Xi+1 is the smallest
key distance among vi’s neighbors, and the search stops at vi if Xi < Xi+1, otherwise it continues.
Therefore, if the search stops at vl, then X0 > X1 > … > Xl-1 > Xl < Xl+1. Since the first node is the
distance between two random values, X0 follows a uniform distribution on [0, 1). Suppose we
have followed a path (v0, v1, v2, …, vl) so far, and none of them was a local minimum. Let
revealed set Rl denote the nodes either on the path or in the neighbor set of the path. That is,

)}(|{ 0 i
l
il vNbvvR +
=∈= U . Since distk(v0)>distk(v1)>…>distk(vl-1)>distk(vl) and distk(vi) <

distk(vj) for all vj∈Nb(vi-1), the node vl has the smallest key distance among all other nodes in
Rl-1, that is, distk(vl) < distk(vj) for all vj∈Rl-1. Since we want to find the next node vl+1∈Nb(vl)
such that distk(vl+1) < distk(vl), we only need to check the nodes in Nb(vl)\Rl-1. We call this set
candidate set at step l+1, denoted by Cl+1. Therefore, Xi+1 is the closest key distance of the
nodes in Ci+1. Since all candidate sets are disjoint, Xi’s are independent. Fig. 6-(a) shows the
topology, and each node is labeled according to its key-distance. The search follows the path

18 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

(v0, v1, v2). The path selection is explained by Fig. 6-(b); at each step, we chose the smallest
key distance (gray circles) among the candidate set (white or gray circles). The empty circles
are revealed nodes in previous steps, so they are excluded in the candidate set. In the figure,
R2={9,6,11,0,3,5,7} and Nb(v2)={1,4,5,6,7}, so C3=Nb(v2)\R2={1,4}. Similarly, C0={9},
C1={6,11}, and C2={0,3,5,7}. Therefore, by choosing nodes with the smallest key-distance in
candidate sets, we chose v0 (distk(v0)=9), v1 (distk(v1)=6), v2 (distk(v2)=0), and v3 (distk(v3)=1).
Since distk(v3)>distk(v2), we stop at v2.

Consider the following thought experiment. Let Δ be the largest node degree in the network.
Then, the candidate set cannot be larger than Δ. Imagine the case (viz., Δ-case) when each
candidate set is as large as Δ (|Ci|= Δ). Since a node is less likely to have the smallest key
distance among a larger set of nodes then among smaller sets, the expected length of the search
increases as the candidate-set expands. Therefore, the expected search length of the original
case is no longer than the Δ-case, thus the Δ-case provides an upper-bound of the search
length.

Theorem 4.1 (Tail-bound of ValleyWalk) Given k>0, the tail-bound of search length L of
ValleyWalk is:

∑
= +Δ

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≥

k

i

i

ii
k

k
kL

0 1
)1(

!
1)Pr(

!
1
k

≤

Proof of Theorem 4.1. Let LΔ be a random variable for the search length in Δ-case and Y0, Y1, Y2,
… be the random variables for key distances along the search path in Δ-case. Let

),...,,(ˆ
10 kyyyf be the joint pdf of Y0, Y1, …, Yk. Then,

.),,,,(ˆ

)Pr(
)Pr()Pr(

1

0 0 0 0 012210

10

0 1 1

∫ ∫ ∫ ∫
−=

≥≥≥=
≥≤≥ Δ

y y y

kk

k

k dydydydyyyyyf

YYY
kLkL

LKL

K

Fig. 6. Analysis of ValleyWalk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 19

Since Yi’s are independent,)()()(),,,(ˆ
110010 kkk yfyfyfyyyf LK = where fi(yi) is the pdf

(probability density function) of Yi. Because Y0 follows the uniform distribution on [0, 1),
f0(y0) = 1. Since the key-distance of each node also follows the uniform distribution on [0,1)
and Yi (i > 0) is the smallest key-distance among Δ nodes, pdf of Yi is fi(yi) = f(yi) = Δ(1-yi)

Δ-1

for i>0 and the cdf (cumulative distribution function) of Yi is Δ−−==)1(1)()(iiii yyFyF .

Since ∫
−

−=1

0 1)()(ky

kkk yFdyyf and ∫
−

+
=

+
−1

0

1
1

)!1(
)(

!
)(

)(iy
j

i
i

j
i

i j
yF

dy
j
yF

yf , it follows

that:

0

1

0
0

1

0 0
0

00

1

0 0 0 0 0122

2
2

23100

1

0 0 0 0 0121113100

1

0 0 0 0 01210 13100

!
))1(1(

!
))(()(

!2
))(()()()()(

)()()()()(

)()()()()()Pr(

0 1 3

0 1 2

0 1 12

dy
k

y

dy
k
yFyf

dydydydyyFyfyfyfyf

dydydydyyFyfyfyfyf

dydydydydyyfyfyfyfyfkL

k

k

y y y

k
k

k

y y y

kkk

y y y

kkk

y

k

k

k

kk

∫

∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫∫

Δ

−
−

−

−−−

−−

−−
=

=

=

=

≤≥

−

−

−−

M

LL

LL

LL

If we integrate the Binomial expansion ∑
=

ΔΔ −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−−

k

i

iik y
i
k

y
0

00)1()1())1(1(, it

follows that:

∑
= +Δ

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤≥

k

i

i

ii
k

k
kL

0 1
)1(

!
1)Pr(

We can simplify the formula by using the finite difference technique. Let Df(x) = f(x + 1) -
f(x). Then, by equating Dkf(x) and Dk(1/x) and replacing x with 1/ Δ, it follows that:

!
1

12111
1)Pr(

k

k
kL

≤

⎟
⎠
⎞

⎜
⎝
⎛ +
Δ

⎟
⎠
⎞

⎜
⎝
⎛ +
Δ

⎟
⎠
⎞

⎜
⎝
⎛ +
Δ

≤≥
L

Morselli et. al [24] showed a tail bound of 12 −

Δ
k for the same problem, and our bound is

significantly tighter. Fig. 7 compares our analysis with Morselli’s analysis and packet-level
simulation results. The simulation parameters are the same as those in Section 5. The topology
had an average degree of 6.5 and a maximum degree of 11 (thus Δ = 11). The variance of the
node degree caused the gap between the simulation and analytic bound, and the gap becomes
negligible when the variance of the degree becomes small. The average search length of the
simulations was 1.49, and the average of our analysis was 1.54.

20 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

Fig. 7. Analysis Results

5. Performance Evaluation
By packet-level simulations, we evaluate the performance of RIGS and VALLEYWALK.

We compare our algorithms with the optimal solution and other existing solutions.

5.1 Methodology
We used ns2 [38] for our simulations. We uniformly placed 100 nodes at random in a 1,000 by
1,000 m2 rectangular area (denoted by density 1.0 in the figures). The wireless communication
range was set to 250m. After an initialization period for gathering neighbor information (30
seconds), each node generates a series of queries with random keys, following a Poisson
distribution of a fixed rate. We varied the total query rate from 20 to 100 queries per second.
We also varied the replication number from 1 to 30 nodes. We repeated the simulations with
20 different random seeds and averaged the results.

5.2 Algorithm

We compared the following algorithms.
1. RIGS: Ring Interval Graph Search proposed in Section 3. We used BFS spanning tree

for the simulations but the result using the DFS spanning tree was similar.
2. VALLEYWALK: Proposed scheme in Section 4.
3. LMS: Local Minima Searching proposed for P2P overlay networks [24]. Rather than

following the recommendation in their paper, we used a random walk of length two,
instead of three, because it worked better in our simulations. We added loop detection.

4. CHORD: As described in [7]
5. OPTIMAL: Each node chooses the closest key copy from the current position and

forwards the query along the shortest path.
Because only ValleyWalk and LMS provide a native replication scheme, we introduced a

simple replication method for RIGS, CHORD, and OPTIMAL. Given a replication number r

and key k, we created equidistant r virtual keys
⎭
⎬
⎫

⎩
⎨
⎧ −=+= 1,...,1,0| ri

r
ikV . Each node

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 21

forwards the query to a neighbor who is the closest to any of the virtual keys. i.e., the next node
u* has the minimum smallest distance to any virtual key among neighbors.

5.3 Metrics
We evaluate the performances of the lookup algorithms with the following metrics. Let us
define three different lengths. Suppose node v tries to find key k for which r copies are stored
in nodes {u1, u2, …, ur} and u1 is the closest from v. Suppose an algorithm finds a key at ui
through path p. Search length is the length of the path p; shortest search length is the shortest
path from v to ui; optimal search length is the shortest search path from v to u1. Then:

 Search-overhead=
lengthsearchoptimal

lengthsearch , performance compared to optimal solution

 Locality-overhead=
lengthsearchoptimal
lengthsearchshortest , closeness of the found key

 Detour-overhead =
lengthsearchshortest

lengthsearch , overhead due to detour

Tail bound of searching length: the probability that the search length is larger than K hops,
that is, Pr(search length ≤ K).

5.4 Results
We first varied the replication factor from 1% to 30%, and compared the algorithms in terms
of the overhead. Then, we compared the scalability as the query rate increases.

Search-overhead. Fig. 8-(a) compares the search-overhead of the algorithms. The
search-overhead of OPTIMAL is, by definition, always one. The performance of RIGS is
almost OPTIMAL. ValleyWalk has about five times the overhead of OPTIMAL when there is
only one key in the network, but the overhead rapidly approaches one as replication increases.
LMS has a similar pattern, but it has about 18 times the OPTIMAL hop count when there is
only one replication, and about two times OPTIMAL at best. CHORD, although
fully-structured, is eight times less efficient than OPTIMAL. Replication did not help CHORD
compensate for its inherent design defect in multi-hop wireless networks.

Locality-overhead. Fig. 8-(b) compares the locality overhead. Both RIGS and
ValleyWalk found very close key-holders and LMS maintained a distance of at most one and
half times the OPTIMAL. CHORD ignored the locality and replication did not help.

Detour-overhead. Fig. 8-(c) shows how much the search path digresses from the shortest
path to the found key. RIGS took the near shortest path and ValleyWalk approached the
shortest path when replication was 5% or greater. LMS took about 17 times longer than the
shortest path with 1% replication, and reduced its detour overhead down to 1.5 times the
optimal solution when replication increased. CHORD took the longest detour to destinations
for most replication factors.

Tail bound. Fig. 8-(d) shows the tail bound of the search length. For OPTIMAL and RIGS,
most queries (95%) took about three hops, and for ValleyWalk they took five hops. However,
for LMS, most queries (95%) took eight hops, while CHORD took more than 20 hops.

Scalability. In order to compare the scalability, we varied the total query rate, the sum of
the per-node query rates, from 20 to 100 queries per second. As the query rate increases,
wireless links become overloaded and packets are dropped. We measured the scalability by the
success ratio of a network protocol between the querying node and a key-holder. The protocol
starts when the querying node finds a key-holder and the protocol requires five round-trip

22 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

messages to finish. A protocol instance succeeds when the querying node finds a key-holder
and all the subsequent messages are delivered. The protocol success rate is the ratio of the
number of successful protocol trials to the total number of queries generated. Fig. 9 shows that
RIGS and ValleyWalk scale well, even with high query rates. We varied the network size and
network density but observed similar results; those figures are not presented due to the space
limit.

Fig. 9. Comparison of Scalability

(a) Search overhead (b) Locality overhead

(c) Detour overhead (d) Tail bound
Fig. 8. Comparison of Searching Performance

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 23

6. Conclusion
In this paper, we presented a novel approach to the peer-to-peer lookup problem in large-scale
and stable multi-hop wireless networks, and proposed a fully-structured topology-dependent
DHT scheme Ring Interval Graph Search (RIGS) and a loosely-structured scheme
ValleyWalk. Simulation results show that RIGS achieves near-optimal search performance,
even if there is only one object copy in the network. ValleyWalk can also achieve a
near-optimal search performance when replication is 5% or greater. The comparison shows
that our schemes are significantly more efficient than the existing P2P-lookup schemes.

References
[1] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, S. Shenker, “GHT: A Geographic

Hash Table for Data-Centric Storage,” In Proceedings of the First ACM International Workshop
on Wireless Sensor Networks and Applications, Atlanta, GA, 2002.

[2] Filipe Araujo and Luus Rodrigues and Jorg Kaiser and Changling Liu and Carlos Mitidieri, “CHR:
A Distributed Hash Table for Wireless Ad Hoc Networks,” In Proceedings of the Fourth
International Workshop on Distributed Event-Based Systems (DEBS) (ICDCSW'05), Washington,
DC, USA, 2005.

[3] Himabindu Pucha and Saumitra M. Das and Y. Charlie Hu, “Ekta: An Efficient DHT Substrate for
Distributed Applications in Mobile Ad Hoc Networks,” In Proceedings of the Sixth IEEE
Workshop on Mobile Computing Systems and Applications, 2004.

[4] Zahn, Thomas and Schiller, Jochen, “MADPastry: A DHT Substrate for Practicably Sized
MANETs,” In Proc. of 5th Workshop on Applications and Services in Wireless Networks
(ASWN2005), 2005.

[5] H. Sozer, M. Tekkalmaz, and I. Korpeoglu, “A peer-to-peer file sharing system for wireless ad-hoc
networks,” In The Third Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net),
2004.

[6] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system based on the xor
metric,” In Proceedings of IPTPS02, Cambridge, USA, Mar. 2002.

[7] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications,” In SIGCOMM, San Diego, CA, Sept. 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scalable content-addressable
network. In SIGCOMM, vol. 31, pp. 161-172, Oct. 2001.

[9] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems,” In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), pp. 329-350, Nov. 2001.

[10] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz, “Tapestry: A
resilient global-scale overlay for service deployment,” IEEE Journal on Selected Areas in
Communications, vol. 22, no. 1, pp. 41-53, Jan. 2004.

[11] R. Bruno, M. Conti, , and E. Gregori, “Mesh networks: Commodity multihop ad hoc networks,”
IEEE Wireless Communications, vol. 43, Mar. 2005.

[12] N. Chang and M. Liu, “Revisiting the ttl-based controlled flooding search: optimality and
randomization,” In Mobi-Com, pp. 85-99, New York, NY, USA, 2004.

[13] Z. Cheng and W. B. Heinzelman, “Flooding strategy for target discovery in wireless networks,”
Wireless Networks, 2005.

[14] A. Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Throughput-delay trade-off in wireless
networks,” In Proceedings of IEEE INFOCOM, 2004.

[15] J. Jun and M. Sichitiu, “The nominal capacity of wireless mesh networks,” IEEE Wireless
Communications, Oct. 2003.

[16] J. Li, C. Blake, D. S. D. Couto, H. I. Lee, and R. Morris, “Capacity of ad hoc wireless networks,” In
MobiCom, pp. 61-69, New York, NY, USA, 2001.

24 Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks

[17] M. Castro, P. Druschel, Y. Hu, and A. Rowstron, “Exploiting network proximity in distributed
hash tables,” FuDiCo, 2002.

[18] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooperative storage
with cfs,” In SOSP, pp. 202-215, New York, NY, USA, 2001.

[19] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica, “The impact of
dht routing geometry on resilience and proximity,” In SIGCOMM, pp. 381-394, New York, NY,
USA, 2003.

[20] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao, “Distributed object location in a dynamic
network,” In SPAA, pp. 41-52, New York, NY, USA, 2002.

[21] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies of replicated objects in a
distributed environment,” In SPAA, pp. 311-320, New York, NY, USA, 1997.

[22] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-aware overlay construction
and server selection,” In INFOCOM, 2002.

[23] I. Clarke, S. G. Miller, T.W. Hong, O. Sandberg, and B.Wiley, “Protecting free expression online
with freenet,” IEEE Internet Computing, vol. 6, no. 1, pp. 40-49, 2002.

[24] R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. A. Marsh, “Efficient lookup on unstructured
topologies,” In PODC, pp. 77-86, New York, NY, USA, 2005.

[25] P. Ganesan, Q. Sun, and H. Garcia-Molina, “Yappers: A peer-to-peer lookup service over arbitrary
topology,” In INFOCOM, San Francisco, California, USA, 2003.

[26] G. H. L. Fletcher, H. A. Sheth, and K. Brner, “Unstructured peer-to-peer networks: Topological
properties and search performance,” Lecture Notes in Computer Science, vol. 3601, pp. 14-27,
2005.

[27] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in unstructured
peer-to-peer networks,” In Proceedings of the 16th annual ACM International Conference on
supercomputing, 2002.

[28] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature, vol. 393,
no. 6684, pp. 440-442, June 1998.

[29] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, “Search in power-law
networks,” Physical Review, E, vol. 64, no. 4, 2001.

[30] M. Penrose, “Random Geometric Graphs,” Oxford Studies in Probability, Oxford University Press,
USA, July 2003.

[31] C. Avin and G. Ercal, “On the cover time and mixing time of random geometric graphs,”
Theoretical Computer Science, vol. 380 no. 1-2, pp. 2-22, 2007.

[32] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Mixing times for random walks on geometric
random graphs,” SIAM ANALCO, Vancouver, 2005.

[33] A. Klemm, C. Lindemann, and O. P. Waldhorst, “A special-purpose peer-to-peer file sharing
system for mobile ad hoc networks,” in Vehicular Technology Conference (VTC), 2003.

[34] A. Duran and C.-C. Shen, “Mobile ad hoc p2p file sharing,” In Wireless Communications and
Networking Conference 2004, IEEE WCNC, vol. 1, pp. 114-119, 2004.

[35] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-based ad hoc routing,” IEEE/ACM Transactions on
Networking, vol. 14, no. 3, pp. 479-491, 2006.

[36] C. Lindemann and O. P. Waldhorst, “A distributed search service for peer-to-peer file sharing in
mobile applications,” In Proceedings of the Second International Conference on Peer-to-Peer
Computing, pp. 73, Washington, DC, USA, 2002.

[37] S. Aly and A. Elnahas, “Sustained service lookup in areas of sudden dense population,” Wireless
Communication and Mobile Computing, vol. 8, no. 1, pp. 61-74, Sep. 2006.

[38] ns2. http://www.isi.edu/nsnam/ns.
[39] Gnutella. http://www.gnutella.com.
[40] B. Yang and H. Garcia-Molina, “Efficient search in peer-to-peer networks,” In PODC, pp. 77–86,

New York, NY, USA, 2005.
[41] N. Li, J. Hou, and L. Sha, “Design and analysis of an MST based topology control algorithm,” In

IEEE INFOCOM, 2003.
[42] V. Rodoplu and T. H. Meng, “Minimum energy mobile wireless networks,” IEEE JSAC, vol. 17,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009 25

no. 8, pp. 1333-1344, Aug. 1999.
[1] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed topology control for power efficient

operation in multi-hop wireless ad hoc networks,” In IEEE INFOCOM, Apr. 2001.

Minho Shin is a Postdoctoral Research Fellow of Institute of Security, Technology,
and Society (ISTS) at Dartmouth College. He earned his M.S. and Ph. D in Computer
Science from the University of Maryland, College Park, USA in 2003 and 2007,
respectively. He earned his B.S. in Computer Science and Statistics from the Seoul
National University, Seoul, Korea in 1998. His research interests are in wireless
networks, wireless network security, and user privacy in people-centric sensing. He has
filed several patents in U.S., Korea, and India, and he has refereed articles for many
journals and conferences.

William A. Arbaugh is an assistant professor in the Department of Computer Science
at the University of Maryland, College Park. His research interests include information
systems security and privacy with a focus on wireless networking, embedded systems,
and configuration management. He received a BS from the United States Military
Academy at West Point, an MS in computer science from Columbia University, New
York, and a PhD in computer science from the University of Pennsylvania, Philadelphia.
He is on the editorial boards of the IEEE Computer and the IEEE Security and Privacy
magazines.

