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Abstract 
 
In recent years the popularity of multi-hop wireless networks has been growing. Its flexible 
topology and abundant routing path enables many types of applications. However, the lack of 
a centralized controller often makes it difficult to design a reliable service in multi-hop 
wireless networks. While packet routing has been the center of attention for decades, recent 
research focuses on data discovery such as file sharing in multi-hop wireless networks. 
Although there are many peer-to-peer lookup (P2P-lookup) schemes for wired networks, they 
have inherent limitations for multi-hop wireless networks. First, a wired P2P-lookup builds a 
search structure on the overlay network and disregards the underlying topology. Second, the 
performance guarantee often relies on specific topology models such as random graphs, which 
do not apply to multi-hop wireless networks. Past studies on wireless P2P-lookup either 
combined existing solutions with known routing algorithms or proposed tree-based routing, 
which is prone to traffic congestion. In this paper, we present two wireless P2P-lookup 
schemes that strictly build a topology-dependent structure. We first propose the Ring Interval 
Graph Search (RIGS) that constructs a DHT only through direct connections between the 
nodes. We then propose the ValleyWalk, a loosely-structured scheme that requires simple 
local hints for query routing. Packet-level simulations showed that RIGS can find the target 
with near-shortest search length and ValleyWalk can find the target with near-shortest search 
length when there is at least 5% object replication. We also provide an analytic bound on the 
search length of  ValleyWalk. 
 
 
Keywords: Multi-hop wireless networks, peer-to-peer search, simulations, mathematical 
analysis 
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1. Introduction 

Multi-hop wireless network can provide a flexible network service to wireless nodes spread 
over a certain area. Through a series of direct connections, distant nodes can indirectly 
communicate when they are beyond their radio coverage. Mesh-like connections between 
neighboring nodes enables multiple choices in choosing paths to the destination for data 
packets. Among applications of multi-hop wireless networks are wireless mesh networks, 
sensor networks, and vehicular ad-hoc networks. However, the lack of a centralized controller 
in those networks often makes it difficult to design a reliable service. Design of packet routing, 
for instance, has been a major challenge in multi-hop wireless networks for a couple of 
decades. Recently, data discovery in multi-hop wireless network has received attention as an 
application in multi-hop wireless networks [1][2][3][4][5]. In particular, one interesting 
question is whether it is possible to build a reliable peer-to-peer (P2P) file-sharing system in a 
wireless domain, likely suggested by the past success of Internet P2P file-sharing [5]. For 
distributed file sharing, a peer-to-peer lookup service is crucial. Using a P2P-lookup service, 
each node (or a peer) can request a target object that is stored within some other node (also a 
peer); each node can act as both a client (requesting data) and a server (serving data), even 
simultaneously if needed. This paper attempts to take an early step toward the design of a 
reliable wireless P2P-lookup service.  

For the design of a wireless P2P-lookup, it is natural to apply the many existing P2P-lookup 
solutions originally intended for wired networks. The distributed hash table (DHT) 
[6][7][8][9][10] is regarded as an efficient and reliable P2P-lookup technology because of its 
highly structured design. Although DHTs may seem applicable at first, their 
topology-independent design makes DHTs inappropriate for multi-hop wireless networks. 
Because of radio interference and limited bandwidth, a multi-hop wireless network is more 
likely to delay or even fail packet delivery, as data travels more wireless links 
[11][12][13][14][15][16]. As DHTs disregard the underlying physical topology, they tend to 
suffer from a long search delay and a low search success rate. This is because a query message 
that only travels a few links in the DHT structure can travel multiple wireless links in the 
underlying wireless network. Although many topology-aware DHT schemes exist 
[17][18][19][20][21][22], DHTs are not primarily concerned with physical locality in their 
structure.  

Other kinds of existing P2P-lookup are loosely-structured and unstructured approaches. 
Unlike DHTs, these do not build a global search structure. Instead, they guide the query 
message to the destination with local hints (loosely-structured) [23][24][25] or with blind 
attempts (unstructured) [26][27]. While the unstructured approach works poorly for multi-hop 
wireless networks due to link vulnerability, the loosely-structured approach is more adaptable. 
However, the analytic claims on unstructured and loosely-structured solutions 
[23][24][26][27] often make topological assumptions that are incompatible with multi-hop 
wireless networks; small world [28], power law [29], Gnutella network, or random graph 
models are assumed, while a multi-hop wireless network is best characterized by a random 
geometric graph [30]. For example, the mixing time analysis of a random walk found in 
[31][32][24] does not apply to random geometric graphs. 

Some past work has explored the wireless P2P-lookup problem. Most works, however, 
proposed flooding-based solutions [33][34][35][36]. However, flooding scales poorly in 
multi-hop wireless networks. Many non-flooding solutions assume that nodes are aware of 
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their locations and use geographic routing [1][2]. Other schemes build on tree structures, 
either by combining an existing DHT with an existing routing algorithm [3][4], or by 
designing their own structure [5]. Tree-based routing, however, has a tendency to forward 
query traffic to the links close to the root of the tree, and cause congestion on those links. Aly 
and Elnahas [37] proposed a hybrid method; their approach is closer to hierarchical approach 
than peer-to-peer approach (similar to the first generation P2P services, e.g., Napster). 

In this paper, we focus on the wireless P2P-lookup problem; given a multi-hop wireless 
network and a set of objects, we assign each object to a node (or multiple nodes if desired) 
such that any node can find the object with the following properties:  

 Decentralization: every node acts as both data requester and data provider,  
 Load balance: each node can store an object with similar probability.  
 Efficiency: every node can find (a copy of) an object as close as possible,  
 Scalability: the scheme scales well with higher query rates.  

In this work, instead of small ad-hoc networks with high mobility, we focus on relatively 
stable but large scale multi-hop wireless networks (such as a wireless mesh network in an 
urban area consisting of more than one hundred nodes). Large-scale is more challenging for 
P2P lookup services because flooding- or randomwalk-based schemes hardly work and 
search-optimization is critical because of large network diameter and inherently high query 
rates. Therefore, we assume the network has little mobility but query load is high.   

We propose two wireless P2P-lookup schemes: a DHT scheme Ring Interval Graph Search 
(RIGS) and a loosely-structured scheme ValleyWalk. The RIGS builds a topology-dependent 
DHT structure such that one-hop neighbors in the structure are also one-hop neighbors in the 
underlying physical topology. Using the same design principle, ValleyWalk uses a simple 
heuristic to forward the query message to a neighbor node that is closer to the destination. 
Unlike RIGS, ValleyWalk is loosely-structured, and a simple hint about the destination guides 
the message to its destination. Both schemes use only local information and a global 
parameter. 

We evaluate our scheme via packet-level simulations (using ns2 [38]) and make a 
comparison with the optimal solution and existing schemes. The results show that RIGS 
always guarantees successful search through near-shortest paths. ValleyWalk also finds the 
target through near-shortest paths when there are a moderate number of object copies in the 
network (i.e., 5% object replication). We also provide a mathematical analysis for finding 
upper-bounds on the search length of ValleyWalk. Our bound is significantly tighter than 
existing analysis given by Morselli et al. [24]. Our schemes, however, focus on static networks 
where the topology of the network does not dynamically change over time.  

In the next section, we discuss existing P2P-lookup schemes that are not discussed in this 
section. In the following two sections, we describe RIGS (Section 3) and ValleyWalk (Section 
4) in more detail. In Section 5 we present simulation results and in Section 6 we analyze the 
performance of ValleyWalk. We conclude in Section 7. 

2. Related Work 

In this section, we discuss existing distributed P2P lookup schemes not discussed in the 
previous section.  

Breadth first search (BFS). Breadth first search requires no structure or topology control; 
the querying node floods the network within a certain hop distance hoping to hit the target [39]. 
Although flooding is simple and may find the closest copy of the target, the broadcast query 
messages can overload the network links. We can limit the flooding area, but finding the 
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optimal flooding radius is not trivial [27]. Iterative deepening [40], Directed BFS, and Local 
indices are suggested to reduce the message overhead. The BFS method, however, is 
undesirable for multi-hop wireless networks, because of the limited bandwidth and 
interference.  

Depth first search (DFS). The requesting node sends a single query message to one of its 
neighbors and each neighbor in turn forwards the query to one of its neighbors, until we hit a 
copy of the target object. Random-walk is a well-known DFS scheme where each node 
uniformly chooses a neighbor at random. Although the message overhead is minimal, the 
response time is high. The k-random-walk improves the response time by starting k 
independent random-walks simultaneously, but it can be costly to stop other random-walks 
when a random-walk finds a target. DFS is also undesirable in multi-hop wireless networks, 
because of its high response time.  

Loosely-structured search. Loosely structured search leaves hints of the target locations 
throughout the network and uses those hints for searching the object. For example, FreeNet 
[23] uses history-based hints, Yappers [25] uses partition-based hints, and LMS [24] uses the 
node-to-object distance in the hash-space. Loosely-structured searching has little or no control 
over the topology, and thus can work in multi-hop wireless networks without significant 
modification. Our ValleyWalk uses a similar approach with LMS, but our searching algorithm 
significantly improved the search performance in multi-hop wireless networks.  

Distributed hash table (DHT). The DHT-based scheme adds a significant amount of 
structure by closely coupling its overlay network topology and the placement of objects. DHTs 
such as CAN [8], Pastry [9], Chord [7], Tapestry [10], and Kademlia [6] can provide 
theoretical bounds on the worst-case performance and can guarantee successful search. 

3. RIGS: Ring Interval Graph Search 
RIGS is fully structured and carefully designed to find the closest target object. RIGS uses a 
novel search structure Ring Interval Graph with Shortest Interval Searching algorithm. The 
structure is built by a distributed algorithm during the initialization phase. Each node is only 
required to know the local information in order to forward search queries to destinations. 
RIGS is designed for stable multi-hop wireless networks (i.e., less mobility). 

3.1 Hash space  
RIGS uses the circular hash space used by Chord [7]. We simplify the original system using the 
assumption of continuity for the hash space; the hash-space is a continuous real interval [0,1) 
instead of a discrete set {0, 1,..., 2m}. As in Chord, we visualize the hash space as a unit-length 
circle where 0 and 1 meet at the same point and the values increase in the clockwise direction.  

Each object is hashed to the hash space [0,1) and the hashed value is called a key. Each node 
is assigned a node-id in [0,1) by the RIGS algorithm. Each key is assigned to the node, viz., 
key-holder, for which the node-ID is equal to or greater than the key value in the hash space. 
Unlike other consistent-hashing systems that assign node-IDs at random, RIGS carefully 
chooses the node-ID such that the assignment generates a Ring Interval Graph.  

3.2 Ring Interval Graph  
In order to assign node-IDs, RIGS builds a distributed data structure called Ring Interval 
Graph. Let us first define ring interval and then define Ring Interval Graph. In this paper, vi  
denotes both the node itself and the assigned node-ID.  
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A ring interval (a, b] is a segment of the hash ring starting at a (excluding a) and ending at 
b (including b) in the clockwise direction. If a ring interval (a, b] contains zero, the interval is 
the union of two real intervals (a,1) and [0,b]. For example, if v8 > v0> 0, then (v8, v0] = {x | v8 
< x < 1 or 0 ≤ x ≤ v0 }. For brevity, we write x→y if there is no node-ID assgined in (x, y). A 
node-set {vi, vi+1, …, vi+k} induces the ring interval (vi-1, vi+k] if vi-1→vi→vi+1→ …→vi+k where 
vi-1 is the preceding node of vi. In Fig. 1, {v8, v9, v10, v11, v0} induces the ring interval (v7, v0]. 
Note that one node {vi} induces the ring interval (vi-1, vi]. 

 

 
Fig. 1. Ring Interval Graph 

 
Definition 3.1 Given a network graph G = (V, E), a Ring Interval Graph (RIG) is an acyclic 
undirected subgraph GRIG = (V, ERIG) where ERIG⊆E and each node is assigned a node-ID such 
that any one-cut (removal of one edge) of GRIG partitions the graph into two subgraphs G1=(V1, 
E1) and G2=(V2, E2), such that V1 induces R1, V2 induces R2, and R1 and R2 partition the hash 
space (i.e., R1∩R2 = Ø and R1∪R2= (0,1]). 

 
Fig. 1-(center) shows a Ring Interval Graph of a 12-node graph. Their node-IDs are    placed 

in the hash space at the corners of the figure. Without loss of generality, we assume that the 
nodes are placed in the order of the node index, in the clockwise direction. In Fig. 1-(top left 
corner), the removal of the edge (v0, v1) partitions the ring into two subgraphs with  node-set 
{v8, …, v11, v0} and {v1, …, v7}. The hash space is partitioned into their induced ring intervals 
[v7, v0) and [v0, v7), respectively. Likewise, the figure illustrates the partition of the graph when 
edge (v1, v2) or (v1, v4) are removed. As Fig. 1-(bottom right coner) concisely illustrates, node 
v1 can decide to which neighbor it should forward the query, by checking which interval the 
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target key belongs to. We build a routing table based on the ring interval information. 
 
Interval table. Given the aforementioned partition information, we build a routing structure 

as follows. Let Nb(v) denote the neighbor set of node v and Nb+(v) = Nb(v)∪{v} be the 
expanded neighbor set. Suppose u∈Nb(v). Then, edge (v, u) partitions the hash-space into two 
ring intervals, one of which includes v and the other which includes u. Let u

vI be one of the ring 

intervals that includes node u. For example, in Figure 1, ],(],,( 0773
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In practice, each node builds a list of <val, node> sorted according to val, where val is the 
ending value of each interval and node is the neighbor node associated with that interval. In 
Fig. 1, i-table(v1) = (<v0, v0>, <v1, v1>, <v3, v2>, <v7, v4>).  
 

Basic routing. Given the i-table, each node can forward queries to a neighbor who is closer 
to the destniation on the Ring Interval Graph. Suppose we are given a query for key k. The 
node first finds an interval that contains the key. For example, node v1 finds that 

4

1
],( 73

v
vIvvk =∈ . Then, the node forwards the query to the neighbor node associated with that 

interval. In our example, v1 forwards to node v4.  
Basic routing, however, limits the traffic on the Ring Interval Graph, which is a spanning 

subgraph of the original graph. Subgraph routing, however, causes traffic congestion along the 
subgraph edges, while edges outside the subgraph remain idle. Subgraph routing also fails to 
find the shortest path and often causes a detour. In Fig. 1, the basic routing algorithm will 
deliver the query of ],( 73 vvk∈  through the path (v1, v4, v5, v6). However, it is likely that node 
v1 and v6 are one-hop neighbors  in the original graph, and thus the query can be delivered in 
one-hop path (v1, v6). In the following section, we describe how RIGS can use the Ring Interval 
Graph to overcome the drawbacks of basic routing, and achieve near-shortest path routing. 

3.3 Shortest Interval Search  
Although basic routing with i-table can route queries to destinations, the message path is 
limited to the spanning subgraph, which wastes edges outside the subgraph. Shortest interval 
search enables RIGS to use all the edges in the network and, more importantly, achieve 
near-shortest routing.  

In brief, each node collects i-tables of neighbor nodes and for routing, the node selects the 
shortest ring interval containing the key in those i-tables, and forwards the query to the 
neighbor associated with the interval. Formally, let us define i*-table of node v as the set of all 
intervals collected from neighbors’ i-tables, which is expressed as: 

i*-table(v) { }}{\)(),(| vuNbwvNbuI w
u

+∈∈=  

Given a key k, node v forwards the query to node u* such that: 
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Fig. 2 illustrates an example of Shortest Interval Search. Suppose we are given a network of 
12 nodes {v0, v1, …, v11}. The node-ID assignment is shown in the graph and their values are 
places in the hash space. In the graph, the solid edges represent the Ring Interval Graph, while 
the dotted lines are the rest of the edges in the network. Suppose node v6  has collected the 
i-tables of neighbor nodes v1, v4, and v5. When v6 receives a query for k such that k→v3, node v6 
checks all the intervals in its i*-table and compares the length of the intervals that contain k:  

],( 31
1 vvI v = , ],( 37

4 vvI v = , and ],( 46
5 vvI v = . Since 1vI has the shortest interval size (see 

Fig. 2-(bottom left corner)), node v6 forwards the query message to node v1. Using the same 
algorithm, node v1 forwards the query to v3, which is the destination. 

 

 

Fig. 2. Shortest Interval Search 

 

The following describes the Shortest Interval Search algorithm, which is executed when 
node v does not have the key. 

1. min := 1 
2. for all u ∈Nb(v) do 
3.    for all w

uI ∈ i*-table(v) do 

4.       if w
uIk ∈ and || w

uI  < min do 
5.          next-node := u 
6.          min := || w

uI  
7.       end if 
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8.    end for 
9. end for 
10. v sends the query to next-node 
 
Before we explain the rationale behind the algorithm, we first claim that following a shorter 

ring interval leads to a shorter path on the Ring Interval Graph than longer intervals.  
 

Theorem 3.1 Given a key k and two nodes v and v', let ∈u
vI i-table(v) and ∈''

u
vI i-table(v') 

such that u
vIk ∈  and '

'
u
vIk ∈ . Then, 

If u
v

u
v II ⊂'

'  and u
v

u
v II ≠'

' , then distance(v', holder(k)) < distance(v, holder(k)) 

where distance(∙) is the hop count between two nodes on the Ring Interval Graph, and 
holder(k) is the node that possesses key k. 
 
Proof of Theorem 3.1. Suppose v∈

u
vI  (equivalently, v = u). Then u

v
u
v II ='

' , a contradiction. 

Therefore, v∉ u
vI v≠u. Then, the edge (v, u) partitions the network into two node-sets; the 

nodes whose node-IDs are in u
vI and the nodes whose node-IDs are in R\ u

vI  where R = [0, 1). 
Any node from one partition cannot go to the other partition without passing the edge (v, u).  

Suppose v' ∈ R\ u
vI . Then, every path from v' to the key-holder of k, which is in the other 

partition, should pass the node v, i.e., v ∈ path(v', holder(k)). Since '
'

u
vIk ∈ , the key-holder of 

k belongs to '
'

u
vI , and the path from v' to holder(k) is contained in  '

'
u
vI . Therefore, v ∈ '

'
u
vI . 

Since u
v

u
v II ⊂'

' , we get v∈
u
vI , a contradiction. Therefore, v'∈ u

vI . 
Here we claim that v' is on the path from v to k, i.e., v' ∈ path(v, holder(k)). Suppose that this 

is not the case; v' is not in path(v, holder(k)). Let w (≠v') be a common node of the paths from 
v to holder(k) and from v' to holder(k), i.e.,  w∈ path(v, holder(k)) ∩ path(v', holder(k)). Since 
w∈ '

'
u
vI , and v' is not in the path from v to w, v cannot be in R\ '

'
u
vI , thus  v∈ '

'
u
vI . Since u

v
u
v II ⊂'

' , 

we get v∈ u
vI , a contradiction. Therefore, v'  is on the path from v to holder(k). 

 
Based on Theorem 3.1, the Shortest Interval Search algorithm always chooses a neighbor 

that has the shortest ring interval containing the key. Although this choice only guarantees 
progression towards the destination on the Ring Interval Graph, the use of all available 
intervals in the vicinity finds short-cut paths beyond the Ring Interval Graph and avoids 
detours. Experimental results show that such a heuristic can achieve near-shortest paths in 
various settings.  

3.4 Construction  
Here we explain how we can construct a Ring Interval Graph of the given network topology. 
The construction requires a spanning tree of the original graph. We can construct a spanning 
tree via a depth-first or breadth-first graph traversal. We can also use one of the available 
distributed spanning-tree algorithms [41][42][43].  

Given a spanning tree, we assign each node a node-ID in an increasing order along the 
depth-first traversal on the spanning tree. We assume that each node v knows the area of the 
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hash space to which it was assigned, denoted by Lv, and ∑ =
v vL 1 . For ease of explanation, 

we assume that the hash space is expanded to [0,n) where n is the number of nodes, and nodes 
are assigned a uniform unit length interval, that is, Lv = 1. Since the assignment requires a 
depth-first traversal of the graph, we can build a depth-first spanning tree simultaneously if 
desired. However, in the algorithm description, we assume that a spanning tree is already 
given. 
 

   
(a) Original network graph (b) Assignment by DFS (c) Constructed RIG 

Fig. 3. Construction of Ring Interval Graph 
 
Fig. 3 shows an example construction of Ring Interval Graph. Suppose we are given a 

network graph, as shown in Fig. 3-(a), where the node-IDs have not yet been assigned. The 
construction algorithm starts with a randomly-chosen node and assigns zero as its node-ID, 
then performs a depth-first traversal, as shown in Fig. 3-(b). In the figure, the number in 
parenthesis denotes the order of visit. At the first visit of each node, the algorithm assigns a 
node-ID, which increases by one at each assignment. The resulting tree becomes a Min-Heap 
tree structure; all node-IDs of any subtree are greater than the node-ID of the root of the 
subtree. This property enables the partitioning property of Ring Interval Graph described in 
Definition 3.1. After assignment, only the edges of the depth-first traversal remain for the Ring 
Interval Graph. Fig. 3-(c) shows the Ring Interval Graph that corresponds to the DFS. The 
following construction algorithm is executed by v when it is the root node or when it receives 
message x from node p  
 

1. if v is a root node then 
2.     y := 0 
3. else 
4.     y := x + Lv 
5.     i-table.add(<x, p>) 
6. end if 
7. node-id(v) := y 
8. i-table.add(<y, v>) 
9. for all u ∈ Nb(v) −{p} and u remains unvisited do 
10.     v sends u : “y” 
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11.     wait v receives from u : “z”  
12.     i-table.add(<z, u>) 
13.     y := z 
14. end for 
15. if v is a not root node then 
16.     v sends p : “z” 
17. end if 

 
When node v receives x, which is the last assigned node-ID, it assigns itself a node-ID by 

increasing x by its assigned area Lv. After adding i-table entries for p and v, it sends the last 
assigned value y to each neighbor and waits until the neighbor finishes assignment of all its 
descendent nodes. The returning value z is the last assigned value in the subtree of u. The node 
v repeats this for unvisited neighbors. After assigning all nodes in its subtree, v sends z to the 
parent node p. The construction ends when the root node receives reply messages from all 
unvisited child nodes, and it finishes the algorithm without executing line 11. 

4. ValleyWalk 
ValleyWalk uses a simple forwarding algorithm with a lightweight local structure; “each node 
forwards the query to the neighbor node that is the closest to the target object in the 
hash-space”. Because of its minimal structure, ValleyWalk assumes that a moderate number 
of object copies are available in the network. After describing the algorithm, we discuss the 
difference between ValleyWalk and LMS [24].  

4.1 Hash Space and Definitions 
ValleyWalk uses the same hash-space as Chord, and we use the same notation used in Section 
3. Unlike RIGS, we hash both objects and nodes to the hash-space, obtaining keys and   
node-IDs, respectively. Let us define metrics to represent the relationship between nodes and a 
key. Given a key k, we define key-hop-count of node v with respect to k, denoted by hopk(v), as 
the number of nodes in the ring interval (k, v]. We also define key-distance of node v with 
respect to k, denoted by distk(v), as the length of the ring interval (k, v], that is, the distance 
from k to v in the clockwise direction. Fig. 4-(a) illustrates the definitions of hopk(v) and 
distk(v). We state that node v is closer to k than node u if distk(v) < distk(u). As in Chord, key k 
is stored in the closest node v, that is, hopk(v) = 1 or, equivalently, distk(v) < distk(u)1 for all 
nodes u. In Fig. 4-(a), holder(k1) = v2, holder(k2) = v5, and holder(k3) = v7. 

Given a key k, a node v is a local minimum with respect to k if v is the closest to the key 
among its neighbors, that is, distk(v) < distk(u) for all u ∈ Nb(v). Fig. 4-(b) shows a network 
with two local minima, node 0 and node 2, and arrows indicating the closest nodes to the key 
among neighbor nodes. In LMS, keys are stored in local minima and each node forwards the 
query to the neighbor who is the closest to the key among neighbors. In the figure, queries are 
routed in the direction of the arrows. When we reach a local minimum but no key is found, a 
random walk is performed to restart another local-minima search. In the following, we explain 
ValleyWalk, which modifies LMS to achieve better performance.  
 

                                                           
1 We assume that no two nodes have the same node-ID. 
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4.2 ValleyWalk  

ValleyWalk performs a simple deterministic walk to search or store keys in the nodes. Each 
node that receives a query for key k forwards the query to one of its unvisited neighbor nodes 
that is closest to k. Formally, node v forwards the query for k to an unvisited node u* if 

)(minarg
)(

* udistu k
vNbu∈

= . 

In order to avoid loops, each node stores recent queries in its cache or records visited nodes 
within the query. When a node finds that the query has already visited all its neighbor nodes, it 
forwards the query to a randomly chosen neighbor. Fig. 5 illustrates the ValleyWalk. On the 
left are the node-IDs placed on the hash space. Suppose node v8 receives a query for key k1. 
According to the values of node-IDs, v0, v1, and v4 are local minima but only v0 holds k1. 
Choosing the closest neighbor to k1 at each step, the query message reaches the destination 
through path (v8 , v1, v3, v0). Note that unlike LMS, ValleyWalk continues with its deterministic 
walk when it reaches an empty (i.e., no key) local minimum. 

As an analogy, we can compare ValleyWalk to a hiking strategy in a mountain where the 
hiker always chooses the direction towards the lowest area around the current position. The 
hiking path can be either downhill or uphill (if the hiker has reached the bottom of a basin), and, 
as a result, the hiker is likely to travel along the valleys between peaks.  

Node v executes the following algorithm when it receives the query message for key k. 
 
1. if v = holder(k) then 
2.     exit 
3. end if 
4. mindist := 1 
5. next := ⊥ 
6. for all u ∈ Nb(v) s.t. u remains unvisited do 
7.     if distk(u) < mindist then 
8.         next-node := u 
9.         mindist := distk(u) 
10.     end if 
11. end for 

(a) Key distance (b) Local Minima 
Fig. 4. Hashing for ValleyWalk and Local Minima 



16                                                                              Shin et al.: Efficient Peer-to-Peer Lookup in Multi-hop Wireless Networks 

12. if next-node = ⊥ then 
13.     pick a random u ∈ Nb(v) 
14. end if 
15. send the query to next-node 
 

 
Fig. 5. ValleyWalk 

4.3 Key Assignment 
Suppose we want to store r copies of each key in the network. Since ValleyWalk always 
forwards the query to a node with a smaller key distance, ValleyWalk is inclined to move 
towards local minima. Therefore, it is most efficient to store keys in local minima (as in LMS). 
However, the number of local minima for a given key depends on the topology and node-IDs. 
Let LMk be the set of local minima and |LMk| be the number of local minima in the network. 
Since the probability is 1/(dv+1) that node v is a local minimum, where dv is the degree of node 
v, the expected number of local minima is: 

∑
∈ +

=
Vv v

k d
LME

1
1|][|  

where V is the total node-set. Since the number of local minima may not equal the replication 
number r, we store r copies of each key as follows. 

We start with a ValleyWalk and whenever we reach a local minimum we store a copy of the 
key in that node. If we can find r local minima, we stop. If we can no longer find a local 
minimum (after a certain number of trials) and we still have copies of the key to store, then we 
store the remaining copies in randomly chosen nodes with a series of random-walks. As a 
result, it is possible to have both a local minimum node without a key and a key holder that is 
not a local minimum. 

The discrepancy between the local minima set and the key-holder set can cause overhead of 
the search algorithm. In particular, a false positive, which involves hitting an empty local 
minimum, is more harmful than a false negative, which involves hitting a non-local-minimum 
and unexpectedly finding the key. In order to minimize the false positives, we can 
intentionally decrease the number of local minima such that |LMk| < r. Since 
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1
|||][|

+
≤
δ

VLME k  where δ is the minimum degree in the network, we can artificially 

decrease the expected number of local minima by increasing the minimum node degree. Given 
a target minimum degree δ*, nodes that have fewer degrees than δ* can expand their neighbor 
sets by adding virtual links with (δ* - dv) 2-hop neighbor nodes. Adding a virtual link means 
that the node creates imaginary edges to the 2-hop neighbors and asks them to send their 
node-IDs. The expansion of the neighbor set creates an asymmetric relationship between 
neighbors; node v considers node u as a neighbor, while node u does not consider v as a 
neighbor. This asymmetry does not affect the correctness of the ValleyWalk. We do not 
expand the neighbor-set beyond 2-hop neighbors, to avoid creating a local overlay-network 
and increasing the search length. 

4.4 ValleyWalk and LMS  
LMS uses both the deterministic walk and random walk. The deterministic walk of LMS 
forwards the query towards the neighbor with the smallest key distance among neighbors and 
the current node (whereas ValleyWalk does not compare with the current node). Consequently, 
LMS stops its search at any local minimum node (whereas ValleyWalk continues the search). 
When LMS reaches an empty local minimum, LMS performs a random-walk, followed by 
another deterministic walk, and it repeats this until it hits a target. In order to avoid continuous 
arrival at the same local minimum (like a black hole), LMS doubles the length of the 
random-walk each time. The characteristics of a random walk differ between a wired network 
and a multi-hop wireless network. For instance, the analysis of the mixing time of the 
random-walk presented in [24] assumes a random graph, which is not the case in multi-hop 
wireless networks. Our simulation results show that by removing this random-walk from LMS 
and by replacing the deterministic walk with ValleyWalk, we can achieve a significant 
performance improvement in wireless P2P-lookup.  

4.5 Analysis of ValleyWalk  
In this section, we provide an analytic upper-bound of the search length of ValleyWalk. For 
simplicity, we assume that |LMk| ≤ r, that is, every local minimum has a key. When |LMk| > r, 
the additional search length when hitting empty local minima should be considered, and our 
analysis does not cover that case. 

We model ValleyWalk as a time series – a series of independent random variables on [0, 1). 
Given a key k, let (v0, v1, v2, …) be a search path and (X0, X1, X2, …) be random variables for 
the key distance of the nodes in the path, that is, Xi=distk(vi). By definition, Xi+1 is the smallest 
key distance among vi’s neighbors, and the search stops at vi if Xi < Xi+1, otherwise it continues. 
Therefore, if the search stops at vl, then X0 > X1 > … > Xl-1 > Xl < Xl+1. Since the first node is the 
distance between two random values, X0 follows a uniform distribution on [0, 1). Suppose we 
have followed a path (v0, v1, v2, …, vl) so far, and none of them was a local minimum. Let 
revealed set Rl denote the nodes either on the path or in the neighbor set of the path. That is, 

)}(|{ 0 i
l
il vNbvvR +
=∈= U . Since distk(v0)>distk(v1)>…>distk(vl-1)>distk(vl) and distk(vi) < 

distk(vj) for all vj∈Nb(vi-1), the node vl has the smallest key distance among all other nodes in 
Rl-1, that is, distk(vl) < distk(vj) for all vj∈Rl-1. Since we want to find the next node vl+1∈Nb(vl) 
such that distk(vl+1) < distk(vl), we only need to check the nodes in Nb(vl)\Rl-1. We call this set 
candidate set at step l+1, denoted by Cl+1. Therefore, Xi+1 is the closest key distance of the 
nodes in Ci+1. Since all candidate sets are disjoint, Xi’s are independent. Fig. 6-(a) shows the 
topology, and each node is labeled according to its key-distance. The search follows the path 
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(v0, v1, v2). The path selection is explained by Fig. 6-(b); at each step, we chose the smallest 
key distance (gray circles) among the candidate set (white or gray circles). The empty circles 
are revealed nodes in previous steps, so they are excluded in the candidate set. In the figure, 
R2={9,6,11,0,3,5,7} and Nb(v2)={1,4,5,6,7}, so C3=Nb(v2)\R2={1,4}. Similarly, C0={9}, 
C1={6,11}, and C2={0,3,5,7}. Therefore, by choosing nodes with the smallest key-distance in 
candidate sets, we chose v0 (distk(v0)=9), v1 (distk(v1)=6), v2 (distk(v2)=0), and v3 (distk(v3)=1). 
Since distk(v3)>distk(v2), we stop at v2.  

Consider the following thought experiment. Let Δ be the largest node degree in the network. 
Then, the candidate set cannot be larger than Δ. Imagine the case (viz., Δ-case) when each 
candidate set is as large as Δ (|Ci|= Δ). Since a node is less likely to have the smallest key 
distance among a larger set of nodes then among smaller sets, the expected length of the search 
increases as the candidate-set expands. Therefore, the expected search length of the original 
case is no longer than the Δ-case, thus the Δ-case provides an upper-bound of the search 
length.  

 

 
Theorem 4.1 (Tail-bound of ValleyWalk) Given k>0, the tail-bound of search length L of 
ValleyWalk is:  
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Proof of Theorem 4.1. Let LΔ be a random variable for the search length in Δ-case and Y0, Y1, Y2, 
… be the random variables for key distances along the search path in Δ-case. Let 
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Fig. 6. Analysis of ValleyWalk 
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Since Yi’s are independent, )()()(),,,(ˆ
110010 kkk yfyfyfyyyf LK =  where fi(yi) is the pdf 

(probability density function) of Yi. Because Y0 follows the uniform distribution on [0, 1),  
f0(y0) = 1. Since the key-distance of each node also follows the uniform distribution on [0,1) 
and Yi (i > 0) is the smallest key-distance among Δ nodes, pdf of Yi is fi(yi) = f(yi) = Δ(1-yi)

Δ-1 

for i>0 and the cdf (cumulative distribution function) of Yi is Δ−−== )1(1)()( iiii yyFyF . 
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We can simplify the formula by using the finite difference technique. Let Df(x) = f(x + 1) - 
f(x). Then, by equating Dkf(x) and Dk(1/x) and replacing x with 1/ Δ, it follows that: 
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Morselli et. al [24] showed a tail bound of 12 −

Δ
k for the same problem, and our bound is 

significantly tighter. Fig. 7 compares our analysis with Morselli’s analysis and packet-level 
simulation results. The simulation parameters are the same as those in Section 5. The topology 
had an average degree of 6.5 and a maximum degree of 11 (thus Δ = 11). The variance of the 
node degree caused the gap between the simulation and analytic bound, and the gap becomes 
negligible when the variance of the degree becomes small. The average search length of the 
simulations was 1.49, and the average of our analysis was 1.54. 
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Fig. 7. Analysis Results 

5. Performance Evaluation 
By packet-level simulations, we evaluate the performance of RIGS and VALLEYWALK. 

We compare our algorithms with the optimal solution and other existing solutions. 

5.1 Methodology 
We used ns2 [38] for our simulations. We uniformly placed 100 nodes at random in a 1,000 by 
1,000 m2 rectangular area (denoted by density 1.0 in the figures). The wireless communication 
range was set to 250m. After an initialization period for gathering neighbor information (30 
seconds), each node generates a series of queries with random keys, following a Poisson 
distribution of a fixed rate. We varied the total query rate from 20 to 100 queries per second. 
We also varied the replication number from 1 to 30 nodes. We repeated the simulations with 
20 different random seeds and averaged the results. 

5.2 Algorithm 

We compared the following algorithms. 
1. RIGS: Ring Interval Graph Search proposed in Section 3. We used BFS spanning tree 

for the simulations but the result using the DFS spanning tree was similar. 
2. VALLEYWALK: Proposed scheme in Section 4. 
3. LMS: Local Minima Searching proposed for P2P overlay networks [24]. Rather than 

following the recommendation in their paper, we used a random walk of length two, 
instead of three, because it worked better in our simulations. We added loop detection. 

4. CHORD: As described in [7] 
5. OPTIMAL: Each node chooses the closest key copy from the current position and 

forwards the query along the shortest path. 
Because only ValleyWalk and LMS provide a native replication scheme, we introduced a 

simple replication method for RIGS, CHORD, and OPTIMAL. Given a replication number r 

and key k, we created equidistant r virtual keys 
⎭
⎬
⎫

⎩
⎨
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ikV . Each node 
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forwards the query to a neighbor who is the closest to any of the virtual keys. i.e., the next node 
u* has the minimum smallest distance to any virtual key among neighbors. 

5.3 Metrics 
We evaluate the performances of the lookup algorithms with the following metrics. Let us 
define three different lengths. Suppose node v tries to find key k for which r copies are stored 
in nodes {u1, u2, …, ur} and u1 is the closest from v. Suppose an algorithm finds a key at ui 
through path p. Search length is the length of the path p; shortest search length is the shortest 
path from v to ui; optimal search length is the shortest search path from v to u1. Then:  

 Search-overhead=
lengthsearchoptimal

lengthsearch , performance compared to optimal solution 

 Locality-overhead= 
lengthsearchoptimal
lengthsearchshortest , closeness of the found key 

 Detour-overhead = 
lengthsearchshortest

lengthsearch , overhead due to detour  

Tail bound of searching length: the probability that the search length is larger than K hops, 
that is, Pr(search length ≤ K). 

5.4 Results 
We first varied the replication factor from 1% to 30%, and compared the algorithms in terms 
of the overhead. Then, we compared the scalability as the query rate increases.  

Search-overhead. Fig. 8-(a) compares the search-overhead of the algorithms. The 
search-overhead of OPTIMAL is, by definition, always one. The performance of RIGS is 
almost  OPTIMAL. ValleyWalk has about five times the overhead of OPTIMAL when there is 
only one key in the network, but the overhead rapidly approaches one as replication increases. 
LMS has a similar pattern, but it has about 18 times the OPTIMAL hop count when there is 
only one replication, and about two times OPTIMAL at best. CHORD, although 
fully-structured, is eight times less efficient than OPTIMAL. Replication did not help CHORD 
compensate for its inherent design defect in multi-hop wireless networks. 

Locality-overhead. Fig. 8-(b) compares the locality overhead. Both RIGS and 
ValleyWalk found very close key-holders and LMS maintained a distance of at most one and 
half times the OPTIMAL. CHORD ignored the locality and replication did not help. 

Detour-overhead. Fig. 8-(c) shows how much the search path digresses from the shortest 
path to the found key. RIGS took the near shortest path and ValleyWalk approached the 
shortest path when replication was 5% or greater. LMS took about 17 times longer than the 
shortest path with 1% replication, and reduced its detour overhead down to 1.5 times the 
optimal solution when replication increased. CHORD took the longest detour to destinations 
for most replication factors. 

Tail bound. Fig. 8-(d) shows the tail bound of the search length. For OPTIMAL and RIGS, 
most queries (95%) took about three hops, and for ValleyWalk they took five hops. However, 
for LMS, most queries (95%) took eight hops, while CHORD took more than 20 hops. 

Scalability. In order to compare the scalability, we varied the total query rate, the sum of 
the per-node query rates, from 20 to 100 queries per second. As the query rate increases, 
wireless links become overloaded and packets are dropped. We measured the scalability by the 
success ratio of a network protocol between the querying node and a key-holder. The protocol 
starts when the querying node finds a key-holder and the protocol requires five round-trip 
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messages to finish. A protocol instance succeeds when the querying node finds a key-holder 
and all the subsequent messages are delivered. The protocol success rate is the ratio of the 
number of successful protocol trials to the total number of queries generated. Fig. 9 shows that 
RIGS and ValleyWalk scale well, even with high query rates. We varied the network size and 
network density but observed similar results; those figures are not presented due to the space 
limit. 
 

 

Fig. 9. Comparison of Scalability 

(a) Search overhead (b) Locality overhead 

(c) Detour overhead (d) Tail bound 
Fig. 8. Comparison of Searching Performance 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 1, FEBRUARY 2009                                  23 

6. Conclusion 
In this paper, we presented a novel approach to the peer-to-peer lookup problem in large-scale 
and stable multi-hop wireless networks, and proposed a fully-structured topology-dependent 
DHT scheme Ring Interval Graph Search (RIGS) and a loosely-structured scheme 
ValleyWalk. Simulation results show that RIGS achieves near-optimal search performance, 
even if there is only one object copy in the network. ValleyWalk can also achieve a 
near-optimal search performance when replication is 5% or greater. The comparison shows 
that our schemes are significantly more efficient than the existing P2P-lookup schemes. 
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