• Title/Summary/Keyword: Multi-Function Radar

Search Result 77, Processing Time 0.025 seconds

Development of Radar Environmental Signals Simulator for Simulating Sub-array Receiving Signals of Active Phased Array Multi-function Radar (능동위상배열 다기능레이다의 부배열 수신신호 모의를 위한 레이다환경신호모의장비 개발)

  • Kim, Gukhyun;Yoo, Kyungjoo;Lee, Kyungmin;Gil, Sungjun;Yang, Eunho;Lee, Kwangchul;Lee, Heeyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.452-458
    • /
    • 2020
  • In this paper, the contents of the development of RESS(Radar Environmental Signals Simulator) for the test of active phased array multi-function radar are described. The developed RESS can simulate multiple target environments, such as target/jamming/missile response/cluster signals, by using received radar operational information and simulated scenario. It can also modulate frequency, phase, gain, timing on all waveforms operated by multi-function radar and simulated two targets and one jamming in the beam. The RESS can be used to perform functional and performance verification of the active phased array multi-function radar with sub-array receiving structures.

The Development of the Multi-function Radar Signal Processor Having the High Spurious Free Dynamic Range (불요신호 특성이 우수한 다기능레이더 신호처리기 개발)

  • Lee, Hee-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.140-146
    • /
    • 2010
  • The multi-function radar can detect and track the low RCS targets. For this purpose the multi-function radar uses the pulse train waveform. because this waveform has high dynamic range and good SNR(Signal to Noise Ratio). But the spurious signals can also be detected by processing the pulse train waveform. Thus the multi-function radar signal processor must have the high SFDR(Spurious Free Dynamic Range). This paper describes the development of the multi-function radar signal processor having the high SFDR.

Fabrication of Analysis Tool for Performance Verification of Naval Multi Function Radar (함정용 다기능레이다 성능검증을 위한 분석도구 제작)

  • Choi, Hong-Jae;Park, Myung-Hoon;Riew, oo-Gon;Kwon, Sewoong;Lee, Ki-Won;Kang, Yeon-Duk;Yo, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • The system performance of naval multi function radar is affected by radar beam operation. Multi f function radar has to operate complicated beam better than search radar and tracking radar which have single operation. This paper describes fabricating analysis tool for the verification method for system performance of naval multi function radar. We composed the model that naval ship with MFR and radar which are detecting targets to verification the system performance. The targets are composed anti-aircraft and anti-ship. We integrate each model and make naval MFR simulator that applied resource management of track beam and search beam. We verify analysis tool by simulation in operating scenario after adjusting system parameter to analysis tool.

High Resolution Radar Model to Simulate Detection/Tracking Performance of Multi-Function Radar in War Game Simulator (통합 교전 시뮬레이터 환경에서 다기능 레이다 탐지/추적 성능 모의를 위한 고해상도 레이다 모델)

  • Rim, Jae-Won;Oh, Suhyun;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.70-78
    • /
    • 2019
  • In this paper, modeling of a high-resolution multi-function radar is proposed to simulate radar performance in a war game simulator, called AddSIM. To incorporate the multi-function radar model into the AddSIM, the modeling must comprise a component-based structure consisting of physics, logics, and information blocks. Therefore, we assign the RF hardware of a RADAR as the physic block, a controller as the logics block, and the RF specifications of the RADAR as the information block. Detailed modeling of the physics and logics blocks are addressed, and data structure is also presented on an engineering level. On a multi-target engaged scenario, the performance of the multi-function radar is numerically analyzed and its validation is examined.

The Development of the Data Acquisition & Analysis System for Multi-Function Radar (다기능레이더 데이터 획득 및 분석 장치 개발)

  • Song, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.106-113
    • /
    • 2011
  • This paper describes Data Acquisition & Analysis System(DAS) for analysis of the multi-function radar. There are various information - beam probing data, clutter map data, plot data, target tracking data, RT tracking data, radar signal processing data, interface data - this device saves. The most important thing of data analysis is that a researcher gets a view of the whole data. The DAS intergrates with all of the data and provides overall information on the time matters occur. This is very useful advantage for approaching the matter easily. System algorithms of multi-function radar are improved by using this advantage. As a result of, range blank region have fallen about 72% and it is able to keep track in jammer environment.

A Performance Enhancement of a Naval Multi-Function Radar Signal Processor (GPU를 이용한 함정용 다기능레이다 신호처리기 성능 개선 연구)

  • Kwon, Se-Woong;Hong, Sung-Min;Ryu, Seong-Hyun;Jung, Chae-Hyun;Sohn, Sung-Hwan;Lee, Ki-Won;Kang, Yeon-Duk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • We studied for GPU based signal processor for naval multi-function radar. We implemented processing software both DSP and GPU, and compared computation performances and power consumption. As a result, computation performance was enhanced from 1.2 to 4.1 times compared with a DSP result. From the results, GPU can alternating DSP based signal processor for common radar processor even though Naval Multi Function Radar.

Task Scheduling and Multiple Operation Analysis of Multi-Function Radars (다기능 레이더의 임무 스케줄링 및 복수 운용 개념 분석)

  • Jeong, Sun-Jo;Jang, Dae-Sung;Choi, Han-Lim;Yang, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.254-262
    • /
    • 2014
  • Radar task scheduling deals with the assignment of task to efficiently enhance the radar performance on the limited resource environment. In this paper, total weighted tardiness is adopted as the objective function of task scheduling in operation of multiple multi-function radars. To take into account real-time implementability, heuristic index-based methods are presented and investigated. Numerical simulations for generic search and track scenarios are performed to evaluate the proposed methods, in particular investigating the effectiveness of multi-radar operation concepts.

A Performance Analysis of Virtualization using Docker for Radar Signal Processing

  • Ji, Jong-Hoon;Moon, Hyun-Wook;Sohn, Sung-Hwan;Hong, Sung-Min;Kwon, Se-Woong;Kang, Yeon-Duk
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.114-122
    • /
    • 2020
  • When replacing hardware due to obsolescence, discontinuation, and expansion of software-equipped electronic equipment, software changes are required in the past, but if virtualization technology is applied, it can be applied without software changes. In this regard, we studied in order to apply virtualization technology in the development of naval multi-function radar signal processing, we studied hardware and OS independency for Docker and performance comparison between Docker and virtual machine. As a result, it was confirmed that hardware and OS independence exist when using Docker and that high-speed processing is possible compared to the virtual machine.

A Control Strategy of Auto-Leveling Equipment of Multi-Function Radar for Vehicle based on Embedded System Modeling

  • Byeol Han;Yushin Chang;Sungyong Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents the control strategy of Auto-leveling equipment (ALE) of Multi-function radar (MFR) for vehicle using Embedded System. MFR implements surveillance patrol missions such as surface-to-air missiles and fighters with constant rotation. ALE consists of 4 Auto-leveling modules (ALM) and retains the stability with maintaining level. The gradient of vehicle can be measured and controlled by embedded systems. This paper contributes for improvement the system design with the ALM 1 set modeling. The validity of the modeling is verified using MATLAB/Simulink.

A Study on Radar Waveform - Polyphase Sequence (레이더 파형 연구 - 다위상 시퀀스)

  • Yang, Jin-Mo;Kim, Whan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.673-682
    • /
    • 2010
  • This paper describes and analyzes a various generation methods of the mutually orthogonal polyphase sequences with low cross-correlation peak sidelobe and low autocorrelation peak sidelobe levels. The mutual orthogonality is the key requirement of multi-static or MIMO(Multi-Input Multi-Output) radar systems which provides the good target detection and tracking performance. The polyphase sequences, which are generated by SA(Simulated Annealing) and GA(Genetic Algorithm), have been analyzed with ACF(Autocorrelation Function) PSL(Peak Sidelobe Level) and CCF(Crosscorrelation Function) level at the matched filter output. Also, the ambiguity function has been introduced and simulated for comparing Doppler properties of each sequence. We have suggested the phase selection rule for applying multi-static or MIMO systems.