• Title/Summary/Keyword: Multi-Feature Decision-Making

Search Result 27, Processing Time 0.023 seconds

Exploring the Performance of Multi-Label Feature Selection for Effective Decision-Making: Focusing on Sentiment Analysis (효과적인 의사결정을 위한 다중레이블 기반 속성선택 방법에 관한 연구: 감성 분석을 중심으로)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.47-73
    • /
    • 2023
  • Management decision-making based on artificial intelligence(AI) plays an important role in helping decision-makers. Business decision-making centered on AI is evaluated as a driving force for corporate growth. AI-based on accurate analysis techniques could support decision-makers in making high-quality decisions. This study proposes an effective decision-making method with the application of multi-label feature selection. In this regard, We present a CFS-BR (Correlation-based Feature Selection based on Binary Relevance approach) that reduces data sets in high-dimensional space. As a result of analyzing sample data and empirical data, CFS-BR can support efficient decision-making by selecting the best combination of meaningful attributes based on the Best-First algorithm. In addition, compared to the previous multi-label feature selection method, CFS-BR is useful for increasing the effectiveness of decision-making, as its accuracy is higher.

Multi-Valued Decision Making for Transitional Stochastic Event: Determination of Sleep Stages Through EEG Record

  • Nakamura, Masatoshi;Sugi, Takenao
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.239-243
    • /
    • 2002
  • Multi-valued decision making for transitional stochastic events was newly derived based on conditional probability of knowledge database which included experts'knowledge and experience. The proposed multi-valued decision making was successfully adopted to the determination of the five levels of the vigilance of a subject during the EEG (electroencephalogram) recording; awake stage (stage W), and sleep stages (stage REM (rapid eye movement), stage 1, stage 2, stage $\sfrac{3}{4}$). Innovative feature of the proposed method is that the algorithm of decision making can be constructed only by use of the knowledge database, inspected by experts. The proposed multi-valued decision making with a mathematical background of the probability can also be applicable widely, in industries and in other medical fields for purposes of the multi-valued decision making.

SINE TRIGONOMETRIC SPHERICAL FUZZY AGGREGATION OPERATORS AND THEIR APPLICATION IN DECISION SUPPORT SYSTEM, TOPSIS, VIKOR

  • Qiyas, Muhammad;Abdullah, Saleem
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.137-167
    • /
    • 2021
  • Spherical fuzzy set (SFS) is also one of the fundamental concepts for address more uncertainties in decision problems than the existing structures of fuzzy sets, and thus its implementation was more substantial. The well-known sine trigonometric function maintains the periodicity and symmetry of the origin in nature and thus satisfies the expectations of the experts over the multi parameters. Taking this feature and the significance of the SFSs into the consideration, the main objective of the article is to describe some reliable sine trigonometric laws (ST L) for SFSs. Associated with these laws, we develop new average and geometric aggregation operators to aggregate the Spherical fuzzy numbers (SFNs). Then, we presented a group decision- making (DM) strategy to address the multi-attribute group decision making (MAGDM) problem using the developed aggregation operators. In order to verify the value of the defined operators, a MAGDM strategy is provided along with an application for the selection of laptop. Moreover, a comparative study is also performed to present the effectiveness of the developed approach.

High Speed Character Recognition by Multiprocessor System (멀티 프로세서 시스템에 의한 고속 문자인식)

  • 최동혁;류성원;최성남;김학수;이용균;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.8-18
    • /
    • 1993
  • A multi-font, multi-size and high speed character recognition system is designed. The design principles are simpilcity of algorithm, adaptibility, learnability, hierachical data processing and attention by feed back. For the multi-size character recognition, the extracted character images are normalized. A hierachical classifier classifies the feature vectors. Feature is extracted by applying the directional receptive field after the directional dege filter processing. The hierachical classifier is consist of two pre-classifiers and one decision making classifier. The effect of two pre-classifiers is prediction to the final decision making classifier. With the pre-classifiers, the time to compute the distance of the final classifier is reduced. Recognition rate is 95% for the three documents printed in three kinds of fonts, total 1,700 characters. For high speed implemention, a multiprocessor system with the ring structure of four transputers is implemented, and the recognition speed of 30 characters per second is aquired.

  • PDF

A Multi-period Behavioral Model for Portfolio Selection Problem

  • Pederzoli, G.;Srinivasan, R.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.6 no.2
    • /
    • pp.35-49
    • /
    • 1981
  • This paper is concerned with developing a Multi-period Behavioral Model for the portfolio selection problem. The unique feature of the model is that it treats a number of factors and decision variables considered germane in decision making on an interrelated basis. The formulated problem has the structure of a Chance Constrained programming Model. Then empoloying arguments of Central Limit Theorem and normality assumption the stochastic model is reduced to that of a Non-Linear Programming Model. Finally, a number of interesting properties for the reduced model are established.

  • PDF

A Fuzzy Genetic Classifier for Recognition of Confusing Handwritten Numerals 4,6, and 9

  • Shin, Dae-Jung;Na, Seung-You;Kim, Sun-Hee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.11-14
    • /
    • 1995
  • A Fuzzy Classifier which deals with very confusing objects is proposed. Naturally this classifier heavily relies on the nulti-feature decision-making procedure. For a simple example, this classifier is applied to the recognition of confusing handwritten numerals 4,6 and 9 The characteristic variables used in this paper are the existence of a loop and the relative location of the starting or ending points(SEP). Thus each sample of handwritten numerals 4, 6 and 9 is classified in one of the 6 groups which are divided according to the sample structure. Each group has its own classifying rules. Also the method of rule-generation using genetic algorithms in each group is proposed.

  • PDF

Smart City Feature Using Six European Framework and Multi Expert Multi Criteria: A Sampling of the Development Country

  • Kurniawan, Fachrul;Haviluddin, Haviluddin;Collantes, Leonel Hernandez;Nugroho, Supeno Mardi Susiki;Hariadi, Mochamad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.43-50
    • /
    • 2022
  • Continuous development is the key of development issue in developing nations. Smart city measurement is prevalently carried through in the cities in which the nations have been classified as industrialized countries. In addition, cities in Europe becomes the models of smart city system. Smart city concept used in the cities in Europe applies six predominant features i.e. smart economic, smart mobility, smart environment, smart people, smart living, and smart governance. This paper focuses on figuring out city' development strategy in developing nations particularly Indonesia in regard with European Framework by way of Multi Expert Multi Criterion Decision Making (ME-MCDM). Recommendation is resulted from the tests using the data collected from one of the metropolis cities in Indonesia, whereby issuing recommendation must firstly implement smart education, secondly communication, thirdly smart government, and fourthly smart health, as well as simultaneously implement smart energy and smart mobility.

A Study on the Prediction of Community Smart Pension Intention Based on Decision Tree Algorithm

  • Liu, Lijuan;Min, Byung-Won
    • International Journal of Contents
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • With the deepening of population aging, pension has become an urgent problem in most countries. Community smart pension can effectively resolve the problem of traditional pension, as well as meet the personalized and multi-level needs of the elderly. To predict the pension intention of the elderly in the community more accurately, this paper uses the decision tree classification method to classify the pension data. After missing value processing, normalization, discretization and data specification, the discretized sample data set is obtained. Then, by comparing the information gain and information gain rate of sample data features, the feature ranking is determined, and the C4.5 decision tree model is established. The model performs well in accuracy, precision, recall, AUC and other indicators under the condition of 10-fold cross-validation, and the precision was 89.5%, which can provide the certain basis for government decision-making.

Towards Improving Causality Mining using BERT with Multi-level Feature Networks

  • Ali, Wajid;Zuo, Wanli;Ali, Rahman;Rahman, Gohar;Zuo, Xianglin;Ullah, Inam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3230-3255
    • /
    • 2022
  • Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.

Smart monitoring system with multi-criteria decision using a feature based computer vision technique

  • Lin, Chih-Wei;Hsu, Wen-Ko;Chiou, Dung-Jiang;Chen, Cheng-Wu;Chiang, Wei-Ling
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1583-1600
    • /
    • 2015
  • When natural disasters occur, including earthquakes, tsunamis, and debris flows, they are often accompanied by various types of damages such as the collapse of buildings, broken bridges and roads, and the destruction of natural scenery. Natural disaster detection and warning is an important issue which could help to reduce the incidence of serious damage to life and property as well as provide information for search and rescue afterwards. In this study, we propose a novel computer vision technique for debris flow detection which is feature-based that can be used to construct a debris flow event warning system. The landscape is composed of various elements, including trees, rocks, and buildings which are characterized by their features, shapes, positions, and colors. Unlike the traditional methods, our analysis relies on changes in the natural scenery which influence changes to the features. The "background module" and "monitoring module" procedures are designed and used to detect debris flows and construct an event warning system. The multi-criteria decision-making method used to construct an event warring system includes gradient information and the percentage of variation of the features. To prove the feasibility of the proposed method for detecting debris flows, some real cases of debris flows are analyzed. The natural environment is simulated and an event warning system is constructed to warn of debris flows. Debris flows are successfully detected using these two procedures, by analyzing the variation in the detected features and the matched feature. The feasibility of the event warning system is proven using the simulation method. Therefore, the feature based method is found to be useful for detecting debris flows and the event warning system is triggered when debris flows occur.