References
- 미아오쉬, 이재성, "음악감성 인식 정확도 향상을 위한 노이즈 제거 기술의 효과 비교 연구", 인공지능인문학연구, 제1권, 2018, pp. 97-123, Available at http://dx.doi.org/10.46397/JAIH.1.5.
- 민동영, 조성준, "코스피 상장 기업의 다중 레이블 분류를 위한 산업군 키워드 사전의 구축: 단어 임베딩 공간 사이의 선형변환학습을 중심으로", 대한산업공학회 추계학술대회 논문집, 2017, pp. 2426-2468.
- 임소라, 권용진, "특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류", 인터넷정보학회논문지, 제18권, 제1호, 2017, pp. 77-88. https://doi.org/10.7472/jksii.2017.18.1.77
- 임채현, 손민지, 김명호, "다중 레이블 분류를 활용한 안면 피부 질환 인식에 관한 연구", 정보처리학회논문지/소프트웨어 및 데이터 공학, 제10권, 제12호, 2021.
- 장수진, 위정아, 김영빈, "합성곱 신경망의 멀티 레이블 학습을 통한 한국 영화 포스터의 장르 예측", 한국 HCI 학회 학술대회, 2019, pp. 746-749.
- 정풀잎, 안현철, 곽기영, "텍스트 마이닝과 소셜 네트워크 분석을 이용한 스마트폰 디자인의 핵심속성 및 가치 식별", 대한경영학회지, 제32권, 제1호, 2019, pp. 27-47, Available at http://dx.doi.org/10.18032/kaaba.2019.32.1.27.
- Agrawal, R., A. Gupta, Y. Prabhu, and M. Varma, "Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages", 22nd International Conference on World Wide Web, 2013, pp. 13-24, Available at http://dx.doi.org/10.1145/2488388.2488391.
- Ahmadi, Z. and S. Kramer, "A label compression method for online multi-label classification", Pattern Recognition Letters, 2018, pp. 64-71, Available at http://dx.doi.org/10.1016/j.patrec.2018.04.015.
- Azhagusundari, B. and A. S. Thanamani, "Feature selection based on information gain", International Journal of Innovative Technology and Exploring Engineering, Vol. 2, No. 2, 2013, pp. 18-21.
- Bogaert, M., J. Lootens, D. Van den Poel, and M. Ballings, "Evaluating multi-label classifiers and recommender systems in the financial service sector", European Journal of Operational Research, Vol. 279, No. 2, 2019, pp. 620-634, Available at http://dx.doi.org/10.1016/j.ejor.2019.05.037.
- Bromuri, S., D. Zufferey, J. Hennebert, and M. Schumacher, "Multi-label classification of chronically ill patients with bag of words and supervised dimensionality reduction algorithms", Journal of Biomedical Informatics, Vol. 51, 2014, pp. 165-175, Available at http://dx.doi.org/10.1016/j.jbi.2014.05.010.
- Cai, J., J. Luo, S. Wang, and S. Yang, "Feature selection in machine learning: A new perspective", Neurocomputing, Vol. 300, 2018, pp. 70-79, Available at http://dx.doi.org/10.1016/j.neucom.2017.11.077.
- Chatterjee, A., U. Gupta, M. K. Chinnakotla, R. Srikanth, M. Galley, and P. Agrawal, "Understanding emotions in text using deep learning and big data", Computers in Human Behavior, Vol. 93, 2019, pp. 309-317, Available at http://dx.doi.org//10.1016/j.chb.2018.12.029.
- Corani, G. and M. Scanagatta, "Air pollution prediction via multi-label classification", Environmental Modelling & Software, Vol. 80, 2016, pp. 259-264, Available at http://dx.doi.org/10.1016/j.envsoft.2016.02.030.
- Dash, M. and H. Liu, "Feature selection for classification", Intelligent Data Analysis, Vol. 1, No. 3, 1997, pp. 131-156, Available at http://dx.doi.org/10.3233/IDA-1997-1302.
- de Morais, J. I., H. Q. Abonizio, G. M. Tavares, A. A. da Fonseca, and S. Barbon, "Deciding among fake, satirical, objective and legitimate news: A multi-label classification system", The XV Brazilian Symposium on Information Systems, 2019, pp. 1-8, Available at http://dx.doi.org/10.1145/3330204.3330231.
- Doquire, G. and M. Verleysen, "Feature selection for multi-label classification problems", International Work-Conference on Artificial Neural Networks, 2011, pp. 9-16.
- Doshi, M., "Correlation based feature selection (CFS) technique to predict student performance", International Journal of Computer Networks & Communications, Vol. 6, No. 3, 2014, pp. 197-206. https://doi.org/10.5121/ijcnc.2014.6315
- Elisseeff, A. and J. Weston, "A kernel method for multi-labelled classification", Neural Information Processing Systems, 2002, pp. 681-687.
- Erevelles, S., N. Fukawa, and L. Swayne, "Big Data consumer analytics and the transformation of marketing", Journal of Business Research, Vol. 69, No. 2, 2016, pp. 897-904, Available at http://dx.doi.org/10.1016/j.jbusres.2015.07.001.
- Folorunso, S. O., S. G. Fashoto, J. Olaomi, and O. Y. Fashoto, "A multi-label learning model for psychotic diseases in Nigeria", Informatics in Medicine Unlocked, 2020, Available at http://dx.doi.org/10.1016/j.imu.2020.100326.
- Fujii, M., H. Sakaji, S. Masuyama, and H. Sasaki, "Extraction and classification of risk-related sentences from securities reports", International Journal of Information Management Data Insights, Vol. 2, No. 2, 2022, 100096.
- George, G., M. R. Haas, and A. Pentland, "Big data and management", 2014, Available at http://dx.doi.org/10.5465/amj.2014.4002.
- Gera, M. and S. Goel, "Data mining-techniques, methods and algorithms: A review on tools and their validity", International Journal of Computer Applications, Vol. 113, 2015, pp. 22-29. https://doi.org/10.5120/19926-2042
- Ghamrawi, N. and A. McCallum, "Collective multi-label classification", The 14th ACM international conference on Information and Knowledge Management, 2005, pp. 195-200.
- Giatsoglou, M., M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, and K. C. Chatzisavvas, "Sentiment analysis leveraging emotions and word embeddings", Expert Systems with Applications, Vol. 69, 2017, pp. 214-224, Available at http://dx.doi.org/10.1016/j.eswa.2016.10.043.
- Gupta, A., P. Panagiotopoulos, and F. Bowen, "An orchestration approach to smart city data ecosystems", Technological Forecasting and Social Change, Vol 153, 2020, 119929, Available at http://dx.doi.org/10.1016/j.techfore.2020.119929.
- Gupta, P., T. K. Sharma, and D. Mehrotra, Label Powerset Based Multi-label Classification for Mobile Applications, In Soft Computing: Theories and Applications, Springer, Singapore, 2019.
- Guyon, I. and A. Elisseeff, "An introduction to variable and feature selection", Journal of Machine Learning Research, Vol. 3, No. 3, 2003, pp. 1157-1182.
- He, W., F. K. Wang, and V. Akula, "Managing extracted knowledge from big social media data for business decision making", Journal of Knowledge Management, 2017.
- Henrique, B. M., V. A. Sobreiro, and H. Kimura, "Literature review: Machine learning techniques applied to financial market prediction", Expert Systems with Applications, Vol. 124, 2019, pp. 226-251, Available at http://dx.doi.org//10.1016/j.eswa.2019.01.012.
- Jabreel, M. and A. Moreno, "A deep learning-based approach for multi-label emotion classification in tweets", Applied Sciences, Vol. 9, No. 6, 2019, pp. 1-16, Available at http://dx.doi.org/10.3390/app9061123.
- Jiang, A., C. Wang, and Y. Zhu, "Calibrated rank-svm for multi-label image categorization", IEEE International joint conference on Neural Networks, 2008, pp. 1450-1455, Available at http://dx.doi.org/10.1109/IJCNN.2008.4633988.
- Jungjit, S., M. Michaelis, A. A. Freitas, and J. Cinatl, "Two extensions to multi-label correlation-based feature selection: A case study in bioinformatics", IEEE International Conference on Systems, Man, and Cybernetics, 2013, pp. 1519-1524.
- Khan, A. U. R., M. Khan, and M. B. Khan, "Naive Multi-label classification of YouTube comments using comparative opinion mining", Procedia Computer Science, Vol. 82, 2016, pp. 57-64, Available at http://dx.doi.org/10.1016/j.procs.2016.04.009.
- Le, T. H., C. Arcodia, M. A. Novais, A. Kralj, and T. C. Phan, "Exploring the multi-dimensionality of authenticity in dining experiences using online reviews", Tourism Management, Vol. 85, 2021, 104292.
- Lee, J. and D. W. Kim, "SCLS: Multi-label feature selection based on scalable criterion for large label set", Pattern Recognition, Vol. 66, 2017, pp. 342-352, Available at http://dx.doi.org/10.1016/j.patcog.2017.01.014.
- Lee, J., I. Yu, J. Park, and D. W. Kim, "Memetic feature selection for multilabel text categorization using label frequency difference", Information Sciences, Vol. 485, 2019, pp. 263-280, Available at http://dx.doi.org/10.1016/j.ins.2019.02.021.
- Li, J., K. Cheng, S. Wang, F. Morstatter, R. P. Trevino, J. Tang, and H. Liu, "Feature selection: A data perspective", ACM Computing Surveys, Vol. 50, No. 6, 2017, pp. 1-45, Available at http://dx.doi.org/10.1145/3136625.
- Lin, S. C., C. J. Chen, and T. J. Lee, "A Multi-Label Classification With Hybrid Label-Based Meta-Learning Method in Internet of Things", IEEE Access, Vol. 8, 2020, pp. 42261-42269. https://doi.org/10.1109/ACCESS.2020.2976851
- Liu, L., D. Dzyabura, and N. Mizik, "Visual listening in: Extracting brand image portrayed on social media", Marketing Science, Vol. 39, No. 4, 2020, pp 669-686. https://doi.org/10.1287/mksc.2020.1226
- Liu, S. M. and J. H. Chen, "A multi-label classification based approach for sentiment classification", Expert Systems with Applications, Vol. 42, No. 3, 2015, pp. 1083-1093, Available at http://dx.doi.org/10.1016/j.eswa.2014.08.036.
- Liu, W. and I. Tsang, "On the optimality of classifier chain for multi-label classification", Neural Information Processing Systems, 2015, pp. 712-720.
- Marcheggiani, D., O. Tackstrom, A. Esuli, and F. Sebastiani, "Hierarchical multi-label conditional random fields for aspect-oriented opinion mining", European Conference on Information Retrieval, 2014, pp. 273-285.
- Miao, J. and L. Niu, "A survey on feature selection", Procedia Computer Science, Vol. 91, 2016, pp. 919-926, Available at http://dx.doi.org/10.1016/j.procs.2016.07.111.
- Montaes, E., R. Senge, J. Barranquero, J. R. Quevedo, J. J. del Coz, and E. Hllermeier, "Dependent binary relevance models for multi-label classification", Pattern Recognition, Vol. 47, No. 3, 2014, pp. 1494-1508, Available at http://dx.doi.org/10.1016/j.patcog.2013.09.029.
- Nam, J., J. Kim, E. L. Menca, I. Gurevych, and J. Frnkranz, "Large-scale multi-label text classification?revisiting neural networks", Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 437-452, 2014.
- Pereira, R. B., A. Plastino, B. Zadrozny, and L. H. Merschmann, "Correlation analysis of performance measures for multi-label classification", Information Processing & Management, Vol. 54, No. 3, 2018, pp. 359-369, Available at http://dx.doi.org/10.1016/j.ipm.2018.01.002.
- Phillips-Wren, G., M. Daly, and F. Burstein, "Reconciling business intelligence, analytics and decision support systems: More data, deeper insight", Decision Support Systems, Vol. 146, 2021.
- Priyadarsini, M. J. P., K. Murugesan, S. R. Inbathini, J. Vishal, S. Anand, and R. N. Nair, "Performance Evaluation of LDA, CCA and AAM", Research Journal of Applied Sciences, Engineering and Technology, Vol. 9, No. 9, 2015, pp. 685-699, Available at http://dx.doi.org/10.1109/ICOEI.2018.8553811.
- Reyes, O., C. Morell, and S. Ventura, "Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context", Neurocomputing, No. 161, 2015, pp. 168-182.
- Rokach, L., A. Schclar, and E. Itach, "Ensemble methods for multi-label classification", Expert Systems with Applications, Vol. 41, No. 16, 2014, pp. 7507-7523, Available at http://dx.doi.org/10.1016/j.eswa.2014.06.015.
- Schlegelmilch, B. B., K. Sharma, and S. Garg, Employing machine learning for capturing COVID-19 consumer sentiments from six countries: A methodological illustration", International Marketing Review, 2022.
- Spolar, N., E. A. Cherman, M. C. Monard, and H. D. Lee, "A comparison of multi-label feature selection methods using the problem transformation approach", Electronic Notes in Theoretical Computer Science, Vol. 292, 2013, pp. 135-151, Available at http://dx.doi.org/10.1016/j.entcs.2013.02.010.
- Stamatescu, G., I. Fagarasan, and A. Sachenko, "Sensing and data-driven control for smart building and smart city systems", Journal of Sensor, 2019, Available at http://dx.doi.org/10.1155/2019/4528034.
- Sun, L., M. Kudo, and K. Kimura, "Multi-label classification with meta-label-specific features", 23rd International Conference on Pattern Recognition, 2016, pp. 1612-1617, Available at http://dx.doi.org/10.1109/ICPR.2016.7899867.
- Tsoumakas, G. and I. Katakis, "Multi-label classification: An overview", International Journal of Data Warehousing and Mining, Vol. 3, No. 3, 2007, pp. 1-13. https://doi.org/10.4018/jdwm.2007070101
- Tsoumakas, G., I. Katakis, and I. Vlahavas, Mining Multi-label Data. In Data mining and Knowledge Discovery Handbook, Springer, Boston, MA, 2009.
- Tsoumakas, G., E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, "Mulan: A java library for multi-label learning", The Journal of Machine Learning Research, Vol. 12, 2011, pp. 2411-2414.
- Vens, C., J. Struyf, L. Schietgat, S. Deroski, and H. Blockeel, "Decision trees for hierarchical multi-label classification", Machine Learning, Vol. 73, No. 2, 2008, pp. 185-214. https://doi.org/10.1007/s10994-008-5077-3
- Wang, J. and J. D. Zucker, "Solving multiple-instance problem: A lazy learning approach", International Conference on Machine Learning, pp. 1119-1125, 2000.
- Wang, J., Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, "Cnn-rnn: A unified framework for multi-label image classification", The IEEE conference on Computer Vision and Pattern Recognition, 2016, pp. 2285-2294.
- Wang, R., S. Ye, K. Li, and S. Kwong, "Bayesian Network Based Label Correlation Analysis For Multi-label Classifier Chain", 2019, arXiv preprint arXiv:1908.02172.
- Wehrmann, J. and R. C. Barros, "Movie genre classification: A multi-label approach based on convolutions through time", Applied Soft Computing, Vol. 61, 2017, pp. 973-982, Available at http://dx.doi.org/10.1016/j.asoc.2017.08.029.
- Wu, G., R. Zheng, Y. Tian, and D. Liu, "Joint Ranking SVM and Binary Relevance with robust Low-rank learning for multi-label classification", Neural Networks, Vol. 122, 2020, pp. 24-39, Available at http://dx.doi.org/10.1016/j.neunet.2019.10.002.
- Xu, S., X. Yang, H. Yu, D. J. Yu, J. Yang, and E. C. Tsang, "Multi-label learning with label-specific feature reduction", Knowledge-Based Systems, Vol. 104, 2016, pp. 52-61, Available at http://dx.doi.org/10.1016/j.knosys.2016.04.012.
- Yassine, A., S. Singh, M. S. Hossain, and G. Muhammad, "IoT big data analytics for smart homes with fog and cloud computing", Future Generation Computer Systems, Vol. 91, 2019, pp. 563-573, Available at http://dx.doi.org/10.1016/j.future.2018.08.040.
- Zhang, M. L. and Z. H. Zhou, "A k-nearest neighbor based algorithm for multi-label classification", IEEE International Conference on Granular Computing, 2005, pp. 718-721, Available at http://dx.doi.org/10.1109/GRC.2005.1547385.
- Zhang, M. L. and Z. H. Zhou, "A review on multi-label learning algorithms", IEEE Transactions on Knowledge and Data Engineering, Vol. 26, No. 8, 2013, pp. 1819-1837, Available at http://dx.doi.org/10.1109/TKDE.2013.39.
- Zhang, M. L. and Z. H. Zhou, "ML-KNN: A lazy learning approach to multi-label learning", Pattern Recognition, Vol. 40, No. 7, 2007, pp. 2038-2048, Available at http://dx.doi.org/10.1016/j.patcog.2006.12.019.
- Zhang, M. L., Y. K. Li, X. Y. Liu, and X. Geng, "Binary relevance for multi-label learning: An overview", Frontiers of Computer Science, Vol. 12, No. 2, 2018, pp. 191-202, Available at http://dx.doi.org/10.1007/s11704-017-7031-7.